
Autonomous Robots
https://doi.org/10.1007/s10514-021-09996-3

Long-horizon humanoid navigation planning using traversability
estimates and previous experience

Yu-Chi Lin1,2 · Dmitry Berenson3

Received: 15 February 2020 / Accepted: 9 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Humanoids’ abilities to navigate stairs and uneven terrain make them well-suited for disaster response efforts. However,
humanoid navigation in such environments is currently limited by the capabilities of navigation planners. Such planners
typically consider only footstep locations, but planning with palm contacts may be necessary to cross a gap, avoid an obstacle,
or maintain balance. However, considering palm contacts greatly increases the branching factor of the search, leading to
impractical planning times for large environments. Planning a contact transition sequence in a large environment is important
because it verifies that the robot will be able to reach a given goal. In previous work we explored using library-based methods
to address difficult navigation planning problems requiring palm contacts, but such methods are not efficient when navigating
an easy-to-traverse part of the environment. To maximize planning efficiency, we would like to use discrete planners when an
area is easy to traverse and switch to the library-based method only when traversal becomes difficult. Thus, in this paper we
present a method that (1) Plans a torso guiding path which accounts for the difficulty of traversing the environment as predicted
by learned regressors; and (2) Decomposes the guiding path into a set of segments, each of which is assigned a motion mode
(i.e. a set of feet and hands to use) and a planning method. Easily-traversable segments are assigned a discrete-search planner,
while other segments are assigned a library-based method that fits existing motion plans to the environment near the given
segment. Our results suggest that the proposed approach greatly outperforms standard discrete planning in success rate and
planning time. We also show an application of the method to a real robot in a mock disaster scenario.

Keywords Motion planning · Humanoid robots · Multi contact locomotion planning

1 Introduction

Disaster response is an important potential application for
humanoid robots because of their abilities to navigate stairs
and uneven terrain, such as rubble. This paper focuses on
constructing navigation plans for a humanoid in such large
unstructured environments (see Fig. 1). Even though the
robot’s sensor range may be limited to only a few meters,
it is still important to construct a long-term navigation plan

B Yu-Chi Lin
linyuchi@umich.edu

Dmitry Berenson
berenson@eecs.umich.edu

1 Robotics Program, University of Michigan, Ann Arbor
48109, MI, USA

2 Nuro, Inc., Mountain View, CA 94043, USA

3 Electrical Engineering and Computer Science Department,
University of Michigan, Ann Arbor 48109, MI, USA

to ensure the robot can reach its goal. Such a plan can
be constructed from a pre-generated map of the environ-
ment; e.g., using a drone to map the environment (Scherer
et al. 2012; Fang et al. 2017) before the humanoid enters.
Long-horizon planning is especially important for disaster-
response because it can save significant execution time by
allowing the robot to avoid being caught in cul-de-sacs and
needing to backtrack.

In disaster environments the terrain is often uneven and
humanoid navigation can benefit greatly from the use of palm
contacts. Palm contacts provide additional support to allow
the robot to make larger steps to avoid obstacles, cross gaps,
or help with balance. However, considering palm contact in
conventional discrete-search navigation planning algorithms
(Kuffner et al. 2001; Chestnutt et al. 2003;Michel et al. 2005)
greatly increases the branching factor of the search, result-
ing in impractical planning times for large environments.
The planning is also difficult because palm contacts impose
stricter contact reachability constraints. The contacts are also

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-021-09996-3&domain=pdf
http://orcid.org/0000-0001-5259-534X

Autonomous Robots

Fig. 1 Using different motion modes to traverse unstructured environ-
ments

usually non-coplanar, which prevents the use of a planar bal-
ance checking method, such as the support polygon, and thus
makes it hard to evaluate the balance constraint.Conventional
discrete-search-based planners explore contacts based on a
heuristic which is agnostic to contact reachability and bal-
ance constraints, and could cause the planner to be trapped in
a cul-de-sac. Therefore, in our framework, we propose two
major contributions to aid with contact-space planning:

First, we introduce a new heuristic for search-based
contact-space planners that allows the planner to avoid dif-
ficult regions in the environment. To compute this heuristic,
we propose to learn a function which predicts the number
of useful footstep transitions in a given region, where use-
ful is defined as producing a significant motion in a given
direction.Traversability indicates how difficult it is for the
planner to find contacts in the environment. By including a
learned traversability estimate into the heuristic function of
the contact-space planner, we can bias the planner to search
the areaswithmore contactable regions, and thus find contact
transition sequences more efficiently.

Second, we propose the use of library-based methods to
avoid search-based planning when possible. With a set of
previously-generated robot locomotion trajectories, we can
optimize those trajectories one at a time to check if they
obey kinematic constraints in a given portion of the environ-
ment until a feasible one is found. This approach directly
evaluates an entire trajectory, which can be much more effi-
cient than search-based planning in difficult-to-traverse parts
of the environment. However, checking trajectories can be
slower than search-based planning in easy-to-traverse parts

of the environment. To maximize efficiency, we would like
to use discrete-search, which we call Planning from Scratch
(PFS), to traverse easier areas and switch to the library-based
method,whichwecallRetrieve andAdapt (RA),when traver-
sal becomes difficult.

The key to our framework is determining where to use
PFS or RA over a long planning horizon. An overview of our
framework is shown inFig. 2.Webegin by planning a guiding
path with a simplified torso pose model using traversabil-
ity estimates to guide the search for contact placements.
Since palm contacts may not be available in all locations
and sometimes they may be unnecessary, the torso planner
also specifies the motion mode (i.e. different combinations
of palms and feet) to use along the path. We then segment
the guiding path into motion modes based on traversability
predictions for each mode. Then, We further segment each
segment based on the average traversability within the seg-
ment. This process results in segments that have either high
or low average traversability. Based on the motion mode and
the traversability of each segment we then assign a planning
method to use: either PFS, when the segment is easy to tra-
verse, or RA, when it is difficult.

Our results on randomly-generated large unstructured
environments in simulation suggest that using our framework
greatly outperforms standard discrete planning in terms of
success rate and planning time. We then test our method on
a real mobile manipulator to demonstrate a practical appli-
cation. We have also released our code open source.1

This paper combines and extends the work appearing in
Lin and Berenson (2017) and Lin and Berenson (2018).
Specifically, this paper integrates the above papers to provide
more details of the proposed framework, expands on related
work, and further demonstrates the proposed approach on a
real robot platform.

2 Related work

Humanoid footstep planning has been studied extensively:
Kuffner et al. (2001), Chestnutt et al. (2003), Michel et al.
(2005), Baudouin et al. (2011), Hornung et al. (2012),
Maier et al. (2013) and Griffin et al. (2019) are discrete-
search-based approaches which formulate the footstep plan-
ning problem as a graph search problem. There are also
optimization-based footstep planners which deform a foot-
step sequence to obey constraints (Kanoun et al. 2009; Deits
and Tedrake 2014). These approaches consider locomotion
on flat or piecewise-flat ground using only foot contacts. In
our work, we deal with uneven terrains, and use not only
the foot contacts, but also palm contacts to help balance the
robot.

1 https://github.com/UM-ARM-Lab/Traversability-Based-Contact-
Space-Planner.

123

https://github.com/UM-ARM-Lab/Traversability-Based-Contact-Space-Planner
https://github.com/UM-ARM-Lab/Traversability-Based-Contact-Space-Planner

Autonomous Robots

Fig. 2 Illustration of the procedure of the proposed framework. Left
to Right: (1) A given environment; (2) A torso pose guiding path is
planned, specifying the motion mode to use in each region; (3) The
guiding path is segmented by changes in motion mode and traversabil-

ity; (4) Each segment is assigned a planning method (PFS or RA) based
on the traversability of the segment; (4) The contact transition sequence
is generated with the specified planner for each segment; (5) The seg-
ments are connected, producing the final contact-space plan

There is also work which focuses on humanoid naviga-
tion in unstructured environments using multiple contacts.
Escande et al. (2009) used optimization to find contacts in
the neighborhood of a “rough” trajectory. However, the plan-
ning time was prohibitively long. Chung and Khatib (2015)
combined discrete-search-based contact-space planningwith
a local trajectory optimizer to quickly compute a whole-body
trajectory using multiple contacts. Tonneau et al. (2018) uti-
lized the robot reachability volume to generate a guiding path
to be close to possible contact locations, and then planned
for contact placement along this path, which significantly
sped up the planning process. Kumagai et al. (2019) extend
Tonneau et al. (2018)’s work to improve its efficiency by fur-
ther decomposing the contact-space planning to first find the
footsteps along the guiding path, and then decide the hand
contacts with approximated balance and reachability con-
straints. We share the idea of using a guiding path to reduce
the search space. However, the above work either defines
which motion mode will be used before planning or favors
the use of hand contact when it is available. In our work,
we focus on the decision of using different motion modes
to deal with environments with varying contact options and
difficulty.

There has been work proposing traversability estimation
algorithms formobile robots (Suger et al. 2015; Cunningham
et al. 2017; Shneier et al. 2008). These methods learn models
to estimate the terrain types based on visual, range or ther-
mal inertia sensor data. The goal is to avoid certain types of
terrain which may cause the mobile robot to slip or be stuck.
Wellhausen et al. (2019) apply similar ideas on quadruped
robots. They learn a mapping between the terrain images and

the terrain reaction forces, and use this information to select
paths going through preferred terrain types. In our work, the
traversability does not measure the effect of the texture of
the terrains on navigation; instead, it measures the richness
of the space for humanoid robot contact placement.

Researchers have investigated predicting traversability for
quadruped robots (Chilian and Hirschmuller 2009; Wer-
melinger et al. 2016). They computed traversability features
such as slope, terrain roughness and step height from visual
data. Those features are combined in a weighted-sum cost
function, which guides the robot. In our approach, we not
only capture features from the environment, but also use
simulation to learn a model to predict the traversability of
the robot in the environment.

There has also been recent work addressing humanoid
or quadruped locomotion planning using different planners
or action types. Grey et al. (2017) proposed a probabilistic
planner to plan humanoid locomotion on flat ground with
doorways and small obstacles on the ground. The planner
saves computation by generating periodic footstep motions
on open flat ground, and plans for whole-body motion only
when an obstacle is close by. Grey et al. (2016) further
extends this framework to include different motion modes,
such as crawling and jumping. We share the same idea of
using different motion modes and planners based on the
geometry of the environment. However, while they assume
that the robot is on flat ground with rich contacts, our work
focuses on finding contact placements in a geometrically
complex environment. Dornbus et al. (2018) proposed an
approach to plan with adaptive dimensionality. The planner
plans formultiple tasks, such aswalking or climbing a ladder,

123

Autonomous Robots

in a low-dimensional representation with multi-heuristic A*,
and computes high dimensional plans for each task. While
this work is promising for planning a sequence of tasks, it is
not clear how well it can perform if the task involves acyclic
motions that require fine planning for the contact placements,
such as traversing rubble. Brandao et al. (2019) proposed a
quadruped motion planner which decides not only the path,
but also the applied controller to traverse through each region
based on a combination of energy and feasibility costs. This
is similar to our strategy of choosing different motion modes
for different parts of a path, though our method for segmen-
tation and our planning methods are different.

3 Definitions

In this section, we define terms that will be used in this paper.

– Contact pose: The pose of an end-effector in contact,
specified in SE(3).

– Stance: A set of contact poses of a robot.
– Contact transition: The transition from one stance to
another bymoving one end-effector to a new contact pose
or breaking a palm contact.

– Contact transition sequence: A sequence of contact tran-
sitions.

– Torso pose: The pose of the simplified robot model
derived from a stance as the mean pose of the feet in
SE(2).

4 Problem statement

We address the humanoid contact-space navigation planning
problem. We first define the environment E as a set of con-
tactable polygonal surfaces. Let s be a stance such that every
end-effector is in contact and within the boundary of one of
the polygonal surface in E. We wish to output a feasible con-
tact transition sequence from the start stance to a goal region,
specified in SE(2), in the workspace as quickly as possible.
For a contact transition sequence to be feasible, the robot
must obey quasi-static balance and collision constraints at
all times when executing this contact transition sequence.
We call searching for a feasible contact transition sequence
“contact-space planning.” We assume that the robot should
always use the foot contacts, but can choose to use one or
both palms to help it navigate. We assume that the robot can
generate sufficient torque to balance itself. We also assume
the friction coefficients of each surface are given to check
quasi-static balance.

5 Method overview

Our framework is depicted in Fig. 2. The process starts by
computing a guiding path for the torso of the robot by plan-
ning a path in an SE(2) × M grid using the A* algorithm,
where M is the set of motion modes (feet only, feet and left
palm, feet and right palm, and all end-effectors). This planner
uses estimates of traversability from our learned regressors to
find a path that is as easy as to traverse as possible while also
being biased to reduce the number of motion mode changes.

Given the torso pose guiding path found by A*, we then
segment the path in two phases: first by motion mode, and
then further by the traversability. This process produces seg-
ments which have either high or low average traversability.
High traversability segments tend to be contact-rich, i.e.
there are many viable options for contact placement. In these
cases it is appropriate to use PFS to plan a contact transi-
tion sequence because the planner is likely to quickly find
feasible contact placements. For low-traversability segments
PFS is unlikely to find a solutions quickly, so we use RA,
which searches a library of previously-computed motion
plans for one that is appropriate for a current segment and
locally deforms the plan to the given environment. If the
library is exhausted before finding a fitting plan, we default
to PFS for this segment. Because PFS and RA have differ-
ent start/goal specifications (RA: regions only, PFS: stance
or region), before initiating planning for each segment, we
order them so that connecting the segments becomes easier.
Finally, when we have planned a valid contact pose sequence
for all segments, we connect themwith a PFS planner to pro-
duce the final result.

In the following sections,wefirst describe the two contact-
space planning approaches used in this work: PFS and RA.
We then introduce how we compute the torso pose guid-
ing path, and how traversability for different motion modes
is estimated to guide the search in contact-space. Finally,
we introduce the segmentation algorithm and describe how
segments are ordered in search and how contact transition
sequences of each segment are connected.

6 The planning from scratch (PFS) approach

In PFS, we formulate the contact-space planning problem as
a graph search problem.We solve the planning problemusing
the Anytime Nonparametrtic A* (ANA*) algorithm (van den
Berg et al. 2011) because anytime or weighted A* has been
applied inmany footstepplanners anddeployedon real robots
to find footstep sequences efficiently (Hornung et al. 2012;
Maier et al. 2013; Griffin et al. 2019). Each state in PFS is a
stance represented as a set of contacting end-effector poses,
and an action is either shifting one end-effector to a new
contact pose, or breaking one palm contact. The contacts are

123

Autonomous Robots

Fig. 3 Left: Foot contact transition model, FC1. (57 steps) Right: The
projections to get the next step pose. The candidate foot poses are pro-
jected to surfaces by first finding z on the projected surface based on the
(x, y) position of the candidate footstep, and then setting the projected
footstep’s pointing direction by taking the direction of (n × f) × n,
where n is the normal of the projected surface and f is the candidate
footstep’s pointing direction before projection

Fig. 4 Palm contact transition model, PC1, represented as a set of pro-
jection vector from the approximated shoulder point. Given pt , we first
identify approximated shoulder point with a fixed transform from pt ,
and then project palm contact from the shoulder points using projection
vectors in PC1

shifted to new poses based on a predefined discrete transition
model. For feet contact, we project the moving foot onto the
environment relative to the standing foot pose, as shown in
Fig. 3. For palm contact, we first define an approximate torso
pose pt as

pt =
[
xl f +xr f

2
yl f +yr f

2
zl f +zr f

2 0 0
θl f +θr f

2

]T
(1)

[
xl f , yl f , zl f

]
and

[
xr f , yr f , zr f

]
are the left and right foot

positions, respectively, and θl f and θr f are the rotations of
each foot about the z axis. We can then derive approxi-
mated shoulder points based on the approximated torso pose.
The palm contacts are projected from each approximated
shoulder point to the environment with a predefined set of
projection vector, as shown in Fig. 4.

Since our PFS is a search-based planner, a cost is required
for each action. For the foot action, we define the cost
function as �g f = dt + ws , where dt is the distance
the approximated torso travels in this action and ws is a
fixed cost of taking a step. For the palm action, the cost is
�gp = dp +ws , where dp is the distance the palm travels in
this action. Each state is feasible if there exists a collision-free
and statically-balanced inverse kinematics solution for the

specified end-effector poses. We use the method described
in Caron et al. (2015) to verify quasi-static balance at each
configuration, which is treated as a constraint in the inverse
kinematics solver. To speed up the process, we approximate
the balance check for the entire transition by checking two
critical configurations: the beginning of the contact transi-
tion where the moving end-effector has just broken contact
and the end of the contact transition where the moving end-
effector is about to make contact. We call this the end-point
balance constraint.

For the heuristic of the contact-space planner, we could
use Euclidean distance from the contact poses to the goal.
However, this approach can easily lead the planner into a cul-
de-sac. Instead, we compute a heuristic function gtp based
on a policy computed for a simplification of the planning
problem (i.e. planning only for the torso). This torso policy
is pre-computed before the contact-space planner is run and
consists of a grid of cells in SE(2), each with a path to the
goal for the torso.We use this heuristic because it allows us to
consider obstacles and gaps in the environment. We explain
the computation of gtp in detail in Sect. 9 where we introduce
torso pose guiding path planning.

Since the torso policy used to compute gtp does not include
palm contact, we add a component to estimate the cost of
palm contact transitions along the path to the goal. We define
the left and right palm component of the contact-space plan-
ner’s heuristic as:

h p,lp (pt) = llp(Ptp,g(pt)) + ws
llp(Ptp,g(pt))

dlp,max

h p,rp (pt) = lrp(Ptp,g(pt)) + ws
lrp(Ptp,g(pt))

drp,max

(2)

where Ptp,g(pt) is the path from the cell containing the torso
pose pt (as generated from the contact state (stance) by Eq.
1) to the goal in the torso policy, llp is the length of the portion
of Ptp,g(pt) where it is possible to make left palm contact
with the environment, and likewise lrp for right palm contact.
dlp,max and drp,max are the maximum distances each palm
contact can travel in one action. For a given motion mode
m, we define the palm heuristic h p (pt ,m) as the sum of the
heuristics for all palms in that mode (0 for feet only).

To evaluate the heuristic for each state in PFS we find the
grid cell containing pt , which is estimated by taking themean
pose of foot contacts. We then combine that cell’s cost gtp
from the torso policy with the palm component h p to arrive
at the heuristic: h (pt ,m) = gtp (pt ,m) + h p (pt ,m).

7 The retrieve and adapt (RA) approach

While PFS works well in environments with abundant con-
tacts, its performance depends heavily on the heuristic and

123

Autonomous Robots

Fig. 5 Several example environments used to collect the motion plans
to construct the motion plan library

the search can get stuck in a cul-de-sac when the states sug-
gested by the heuristic are infeasible, such as going through
a region with limited contacts. PFS also requires a finely dis-
cretized transition model to navigate through such region.
Therefore, in Lin and Berenson (2016), we proposed a plan-
ning method based on trajectory optimization, which locally
deforms an existing humanoid joint-space trajectory (i.e. a
motion plan) so that the contacts of this trajectory lie on
surfaces in a new environment. This method is particularly
well-suited for spaces with few accessible contacts if the
motion plan we start with is relatively close to the new envi-
ronment’s surfaces.

To select a good initial trajectory, Lin andBerenson (2016)
showed how to construct a motion plan library, sort the
motion plans based on how well the contacts matched to
the new environment, and finally deform motion plans one-
by-one until a matching motion plan was found. In Lin and
Berenson (2018) and this work, we keep the motion plan
contact pose sequence matching process presented in Lin
and Berenson (2016), but modify it to have less computa-
tional overhead in selecting a motion plan from the library.
We also generalize the original approach to allow extraction
of partial motion plans in order to fit a longer plan to a closer
goal (the inability to do this was a significant limitation of
Lin and Berenson (2016)). In addition we allow connecting
multiple plans to reach a distant goal by making multiple
queries to the library for a single segment.

7.1 Constructing themotion plan library

We construct a motion plan library for each motion mode,
with each mode’s library containing Nmp motion plans. For
each motion mode, we collect a library of motion plans by
planning with the PFS method in randomly tilted surface
environments with and without stairs. Figure 5 shows some
examples. Each motion plan π consists of a joint trajec-
tory, the corresponding contact pose sequence C(π), and the
motion plan torso path Pt (π). C(π) is defined as

C(π) = {〈ck, ek〉 |ck ∈ SE(3); k = 1, 2, ..., Nc} (3)

Fig. 6 Different cases of motion plan library query. Red and green
rectangles represent the contact poses of motion plans. a A segment of
torso pose guiding path. b The motion plan is too long compared to
the torso pose guiding path. Partial motion plan is extracted to match
the torso pose guiding path. c The motion plan is so short that it can
cover only part of the torso pose guiding path. It will need another query
from torso pose pt,3 to pt,6. d The motion plan matches the torso pose
guiding path with lsg − rg ≤ lmp ≤ lsg + rg . We use full motion plan
in this case. It is a special case of b.

where ck is the pose of contact k in the motion plan, ek is an
indicator of which end-effector the contact k belongs to, and
Nc is the number of contacts. Given the foot contact poses,
we can find all approximated torso poses along the path by
taking the mean of the foot contacts of each stance, and then
project each approximated torso pose on the torso pose grid
to form a torso path:

Pt (π) = {
pk |pk ∈ SE(2); k = 1, 2, ..., Np

}
(4)

In practice, we first derive the stances corresponding to the
motion plan π , and then compute C(π) and Pt (π) accord-
ingly. When matching a motion plan to a start and a goal
specified as torso pose in SE(2), Pt provides a mapping
between the contact pose sequence and its location on the
torso pose grid. Therefore, Pt (π) can help extract partial
contact pose sequences from π to move the robot to the goal.
We then extract a set D(π) from the torso path Pt (π) as the
set of Euclidean distance in the XY plane between the start
torso pose p1 and all torso poses pk ∈ Pt (π).

D(π) = {
dk |dk = d (p1, pk) , d2 ≤,,≤ dNp , pk ∈ Pt

}

(5)

We force dk to bemonotonically increasingwith k in every
motion plan. If a motion plan does not follow this assump-
tion, it can be further decomposed and stored in the library
separately. We call the longest distance in D the motion plan
length, lmp. When searching through the library we check
plans with larger lmp first because, if successful, they will
make the most progress toward the goal.

123

Autonomous Robots

Fig. 7 Left: Extracted contact region sampling on the surfaces. Right:
Contact pose versus contact region distance

7.2 Querying themotion plan library

Given a segment of the torso pose guiding path, denoted as
Ptp,i , we define the start and the goal at the first and the
last torso pose in Ptp,i , as shown in Fig. 6a. We denote the
Euclidean distance in position between the start and the goal
as lsg . Since it is unlikely to find a motion plan to move the
torso pose exactly to the goal, we define a goal radius rg
to form a circular region around the goal. When matching
a motion plan to the environment, if any d j ∈ D(π) of a
motion plan is greater than lsg − rg and less than lsg + rg ,
the motion plan has the potential to move the robot from the
start to the goal region. Therefore, we check if there exist
d j ∈ D(π), such that lsg − rg ≤ d j ≤ lsg + rg . If such
d j exists, the partial motion plan corresponding to the torso
path segment between the first and the j th torso pose can
move the robot from the start to the goal region. We extract
this part of the motion plan as the effective segment of the
motion plan πe, as shown in Fig. 6b. When lmp < lsg − rg ,
the motion plan cannot move the robot from the start to the
goal region. In this case, the motion plan can only cover part
of Ptp,i , and stop in the neighborhood around a torso pose
ptp ∈ Ptp,i . The part of Ptp,i after ptp will then be used
to query the library again, as shown in Fig. 6c. In this case,
the effective segment of the motion plan would be the whole
motion plan, so we let πe = π .

In both cases, if we cannot find a πe to meet the distance
requirement, we reject this motion plan. If πe is found, we
would like to deform its joint trajectory to move the contact
poses in C(πe) to the surface patches in the environment
so that the robot can make contact with the environment.
To achieve this, we first adopt the method in Chung and
Khatib (2015) andLin andBerenson (2016) to extract contact
regions from the environment, as shown in Fig. 7. The contact
regions are a set of overlapping circular regions which mark
where the robot can place its end-effectors.We denote the set
of contact regions as CR, and define the distance between a
contact pose c and a contact region cr ∈ CR as:

γ (c, cr) =
√
d2xy + d2z + wr dori

dxy = max
(
0,

∣∣(x ′
c, y

′
c

)∣∣ − rcr
)
, dz = ∣∣z′c

∣∣
dori = 1 − n′

c · [0, 0, 1]T
(6)

where
(
x ′
c, y

′
c, z

′
c

)
and n′

c are the contact position and normal
in the contact region frame, wr ∈ R

+ is a weighting factor,
and rcr is the the contact region radius. Furthermore, we can
define the projection of the contact pose to the contact region
by shifting the contact pose to the closest point inside the
contact region, and rotate the pose to align the contact pose
normal to the contact region normal, as shown in Fig. 7.

Before deformation of the contact poses, we treat the con-
tact pose sequence C(πe) as a rigid body with 4 degrees of
freedom: translation in the X, Y and Z directions, and rota-
tion about the Z axis, expressed as

(
xrp, yrp, zrp, θrp

)
, we

wish to find a transform of the entire plan that minimizes the
distance between the plan and the environment. We call this
representation of a plan as a rigid body a rigid plan. Find-
ing a globally-optimal alignment of the rigid plan is costly
so we find a local solution using a Jacobian-based approach.
This approach “snaps” the rigid plan to the nearest set of
contact surfaces. Given a query environment with the start
(xs, ys, zs(xs, ys), θs) and the goal (xg, yg, zg(xg, yg), θg),
the algorithm initializes the rigid plan pose Trp = (x0,rp,
y0,rp, z0,rp, θ0,rp) as:

x0,rp = xs; y0,rp = ys; z0,rp = zs

θ0,rp = atan2(yg − ys, xg − xs)
(7)

After initialization, we iteratively update Trp using its
Jacobian tomove the rigid plan’s C(πe) closer to their nearest
contact regions. At each iteration, we find crmin,i , the closest
contact region to 〈ci , ei 〉 ∈ C(πe). To ensure that the motion
plan connects the start and the goal, the foot poses of the
start and the goal configurations are matched to the start and
the goal regions, respectively. Jacobian Ji relates Ṫrp, the
change in the rigid plan pose, to ċi , the desired change in the
pose of contact ci . By combining the Jacobians for all ci , we
have J such that:

⎡
⎢⎢⎢⎣

ċ1
ċ2
...

˙cNe

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

J1
J2
...

JNe

⎤
⎥⎥⎥⎦ Ṫrp = J Ṫrp (8)

where Ne is the number of contacts in πe. We then use the
pseudo-inverse J+ to arrive at a Ṫrp that takes into account
the desired motion of all ci :

Ṫrp = J+ [
ċ1T , ċ2T ,, ˙cNe

T
]T

(9)

123

Autonomous Robots

Fig. 8 Torso pose transition model. The position and orientation res-
olution used by this work is 0.135m and π

6 radian, respectively. The
pink cells show where the torso can move from the red cell based on
its orientation in one step. In torso pose guiding path planning, for each
step, the torso is allowed to change its orientation by ± π

6 and move to a
position cell specified by the current orientation. Torso pose transition
model for other orientations can be derived from the above transition
models and rotate the grid by n π

2 radian, n ∈ N

The rigid plan pose will converge to a local minimumT′
rp.

The distance between a rigid plan and the query environment
is then defined as:

�(C(πe),CR) = 1

Ne

Ne∑
i=1

γ
(
c′
i , crmin,i

)
(10)

where c′
i is the i th contact pose in C(πe) transformed by T′

rp.
For each converged rigid plan T′

rp, we check if the plan’s
contacts are too far from their nearest surfaces, and if so
we reject the plan. If not, the motion plan, now expressed
as a sequence of configurations, is modified and optimized
to fit the query environment with Contact-Consistent Elastic
Strips (CES) (Chung andKhatib 2015). Each configuration of
the trajectory will move contacts toward the nearest contact
region. To speed up the process, we do not check the bal-
ance constraint in the loop of CES. Instead, we check if the
resulting contact transition sequence follows the end-point
balance constraints. If the check passes, RA will output this
final motion plan as the result.

8 Estimating traversability

In the previous two sections, we first introduced PFS, a dis-
crete search-based planner. We then described RA, which
chooses and locally deforms joint trajectories to fit a motion
plan to a given environment. PFS ismore efficient when there
are many accessible contacts, but RA can handle more diffi-
cult environments where contacts are limited. To get the best
of both worlds, we would like to determine which method
(PFS or RA) to use to efficiently plan a contact sequence
through different parts of a large environment. Our approach
to this is to estimate how difficult it will be to find useful

contact transitions in a given region of the environment and
use that estimate to select a planning method for that region.
We describe how to compute this estimate below:

Traversability is defined as the number of useful footstep
transitions in a given region, where useful is defined as pro-
ducing a significant motion in a given direction. Intuitively,
if there are many useful footstep transitions in a given region,
thePFSplanner ismuchmore likely tofindapath through that
region. Thus if the planner knows which region has a higher
traversability before planning, it can bias its search to avoid
difficult regions via torso pose guiding path planning, and
generate a contact transition sequence more quickly. There-
fore, for any given torso pose pt in an environment E, we
define traversability as |�+| : {v,m} → R+, where v is a 2D
torso translation in the XY plane, m is the motion mode, and
E is expressed as the set of planar contact surfaces. For each
pt , We use a finite set of v, as shown in Fig. 8.

8.1 Traversability measure

To calculate the traversability, we start by finding a set of
feasible footstep combinations � at pt . This process of find-
ing � corresponds to line 2 in Algorithm 1 To compute �,
we first use the foot contact transition model FC1 shown in
Fig. 3 to find possible footstep combinations centered around
pt = (xt , yt , θt). For each footstep in the foot contact transi-
tion model, the left foot pose is specified relative to the right

foot pose in SE(2):
(
xr fl f , yr fl f , θ

r f
l f

)
.We define each possible

footstep combination pose centered around pt as:

θl f = θt + 1

2
θ
r f
l f ; θr f = θt − 1

2
θ
r f
l f

[
xl f
yl f

]
=

[
xt
yt

]
+ 1

2

[
cos θt − sin θt
sin θt cos θt

] [
xr fl f
yr fl f

]

[
xr f
yr f

]
=

[
xt
yt

]
− 1

2

[
cos θt − sin θt
sin θt cos θt

] [
xr fl f
yr fl f

]
(11)

where (xl f , yl f , θl f) and (xr f , yr f , θr f) are left and right foot
poses, respectively. Note that the torso pose pt is the mean of
the left and right feet poses in each footstep combinationwith
this definition. These SE(2) feet poses will then be projected
to the environment to obtain the full SE(3) pose, as shown
in Fig. 3. A footstep combination is feasible if there exists a
valid projection on the environment for both feet.

Given an environment E, a motion mode m, a torso trans-
lation v and a starting footstep combination γ ∈ �, if the
PFS planner can generate a single footstep transition from γ

with palm contacts specified by m and moves the mean feet
position to the cell to which [pt [x], pt [y]]T + v belongs in
the torso pose grid, we call such γ an useful footstep com-
bination. For each γ , if m is a motion mode which requires

123

Autonomous Robots

Algorithm 1: Compute Ground Truth Label for
Traversability
Input : pt (Torso pose), v (Torso translation),m (Motion
mode),E (Environment, specified as a set of surfaces),FC1 (Foot
contact transition model) ,PC1 (Palm contact transition model);
� ← GetFeasibleFootstepCombinations (pt ,E,FC1);
�+ ← { };
for γ in � do

if ContactSequenceExists (γ, v,m,E,FC1,PC1) then
�+ ← {γ } ∪ �+;

end
end
return |�+|;

palm contacts, the plannerwill start from a set of initial states,
whose foot locations are γ , with all combinations of possi-
ble palm contacts given by the palm transition model PC1,
as shown in Fig. 4. The above process is line 5 in Algorithm
1.

8.2 Computing contact clearance feature to
estimate traversability

In this work, we quantify the traversability as the number of
useful footstep combinations, denoted |�+|, which serves as
an indicator for how difficult it is for the planner to find a
contact transition sequence in environment E moving from
torso pose pt with v torso translation using motion mode m.
The process computing |�+| is summarized in Algorithm 1.
However, to compute the traversability in an environment E
would require running a PFS planner for every combination
of (pt , v,m), which is clearly too time-consuming. There-
fore, wewould like to learn a traversability estimator for each
(v,m) pair which predicts |�+| based on contact clearance
features extracted in the neighborhood of torso pose pt in
an environment E. Contact clearance features represent how
much surface area there is tomake contact around the queried
pt making a torso pose transition for the given v andm.While
it is possible to also consider other features, such as inclina-
tion angle, we focus on the contact clearance feature in this
work because it strongly influences which planning method
(PFS or RA) is likely to succeed. When the surface area is
small, it is difficult for PFS to find a feasible contact within
the discrete contact transition set (FC1 and PC1). However
RA, which is a trajectory optimization approach, can deform
the robot configurations and the contact poses continuously
to place contacts in small areas.

To compute the contact clearance feature, we first dis-
cretize each surface polygon into a set of contact points Ci

which form a grid. We denote the set of all contact points,
which is also the union of all Ci s from all surface, as C .
For each contact point c ∈ C , we cast a ray along the nor-
mal of each surface for a short distance (accounting for the

Fig. 9 The grid of contact points on a surface plane. The distance of
each contact point to the closest obstacle or surface boundary is marked
in color spectrumorder. Note that the light gray surface is covered by the
dark gray surface, which causes part of its contact points to be infeasible

swing foot height of the robot) to check if the contact point
is collision-free. The distance of each contact point to the
closest obstacle or surface boundary, denoted as δ (c), is
approximated as the closest distance to any contact point
in collision or out of boundary. Figure 9 shows an example
contact point grid of a surface. We can define the following
scoring function to represent the clearance of each contact
point:

S (c) =
⎧⎨
⎩
0 δ (c) < rins
δ(c)−rins
rcir−rins

rins ≤ δ (c) < rcir
1 δ (c) ≥ rcir

(12)

rins and rcir are the radius of the inscribed and circumscribed
circle of the contact end-effector shape, respectively. For each
contact, if δ (c) is larger than rcir, theremust exist enough free
space for any contact pose at the contact point c. However,
if δ (c) is lower than rins, it is impossible to make contact at
c regardless of the orientation of the contact.

S describes how likely a contact pose is feasible given its
corresponding contact point c. In other words, each collision
check is turned into a table lookup, which speeds up the
process. For foot contacts, based on the footstep transition
projection shown in Fig. 3, we can further project all the
contact points on ground surfaces to a 2D grid on XY plane
so that S can be queried with only the X and Y coordinate of
the foot contact.

For each feasible foot combination γ ∈ �, we expand
the contact-space planning search tree based on the tran-
sition model shown in Fig. 3 for only one step. For each
expansion, we can define a footstep translation tuple α as

α =
{
ttl f , t

t
r f , t

t
ex

}
. ttl f and ttr f are the 2D translation of the

left foot and right foot in the torso frame in the XY plane,
and ttex is the 2D translation of the expanded footstep in the
torso frame in the XY plane. Following the definition of torso
pose pt in Eq. 1, each α corresponds to a translation v in the
torso grid. Since each position in α is in the XY plane, we
can pre-compute all α, and label each α by its corresponding
nearest v. We denote the set of α for each v as A (v).

123

Autonomous Robots

Algorithm 2: Generate the Contact Clearance Feature
Vector
Input : pt (Torso pose), v (Torso translation),E (Environment,
specified as a set of surfaces), A (v) (Set of footstep translation
tuple) ,PC1 (Palm contact transition model),C (Set of contact
points);
Tpt ← GetTransformaionMatrix (pt);
S f ← 0, Sp ← [0, 0, 0, 0];
for α in A (v) do

Sα ← 1;
for t in α do

cNearest ← GetNearestContactPoint
(
Tpt t,C

)
;

Sα ← SαS(cNearest);
end
S f ← S f + Sα ;

end
for pc in PC1 do

ppalm ← GetPalmPose (pt , pc);
cNeareset ← GetNearestContactPoint

(
ppalm ,C

)
;

iq ← GetPalmQuadrant
(
pt , ppalm

)
;

Sp[iq] ← Sp[iq] + S(cNeareset);
end
return

[
S f ,Sp

]
;

Lines 4 to 10 in Algorithm 2 describe the process of com-
puting the footstep score S f . We first iterate through each α

labeled as moving in the direction v. For each foot placement
in the tuple, we find its nearest contact point, and the corre-
sponding score using Eq. 12. The multiplication shown in
Line 8 captures the idea that the feasibility of each footstep
transition α requires all three foot contacts to be collision-
free. Finally we sum the scores for each α to obtain the
footstep score S f .

The palm contact direction also affects the robot’s ability
to move in a certain direction. For example, if there exist
only palm contacts in the direction opposite to the direction
of motion, the planner may not be able to find a valid contact
transition sequence. Therefore, we add an additional feature:
the contact clearance feature of palm contacts around pt . We
first find all palm contact projection onto the environment
with a palm contact transitionmodelPC1, as shown in Fig. 4.
Each projection then returns a nearest contact point c on
one of the surfaces. To represent the direction of the palm
contacts relative to pt , we divide the palm scores into the
four quadrants of the torso frame: Sp[i] for the i th quadrant.
This process corresponds to Lines 10 to 14 in Algorithm 2.
With

[
S f , Sp[1], Sp[2], Sp[3], Sp[4]

]
, we define the contact

clearance feature vector S (pt , v,m,E) as:

S (pt , v,m,E) =
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

[
S f

]
, m = feet only[

S f , Sp[1], Sp[2]
]
, m = feet and left palm[

S f , Sp[3], Sp[4]
]
, m = feet and right palm[

S f , Sp[1], Sp[2], Sp[3], Sp[4]
]
, m = all end-effectors

(13)

To train the estimator for each motion mode, we generate
multiple environment with randomly tilt surfaces, and collect
ground truth data for the difficulty in planning using the PFS
approach.We then learn each estimator using Support Vector
Regression (SVR) with an RBF kernel. We then define the
traversability cost �gtr

(
pt,i , pt, j ,m j

)
as:

�gtr
(
pt,i , pt, j ,m j

) = e−|�+|(pt,i ,v,m j) (14)

where v is the torso translation closest to [pt, j [x] − pt,i [x],
pt, j [y]− pt,i [y]]T and |�+| is the appropriate traversability
estimate for the transition from pt,i to pt, j . With this defini-
tion, higher traversability implies a lower traversability cost,
and vice versa.

9 Torso pose guiding path

The purpose of computing a torso pose guiding path with a
simplified model is to guide the higher-dimensional contact-
space planning search. In this work, we discretize the robot
torso pose in x and y, and the rotation about the z axis, θ ,
and call the resulting grid the torso pose grid. In this paper,
we assume that the robot is traveling on a surface, so z is
uniquely defined by the x and y coordinates. Thus we do
not include z in the grid. The grid cells in which there is no
contactable surface or the torso collideswith the environment
will be marked as invalid by the torso planner. The possible
transitions of the robot torso for one step are shown in Fig. 8.
The ellipse shape captures the fact that the robot can travel
farther with a forward or backward step than a lateral step.

A torso pose guiding path Ptp is a sequence of torso poses:

Ptp = {pt,1, pt,2....., pt,Np

∣∣pt,1,, pt,Np ∈ SE(2) }
(15)

where Np is the number of torso poses in Ptp. Note that
Ptp is defined on a grid, so the values of each torso pose is
discretized based on the density of the grid. To introduce the
motion mode into the torso pose grid, we append the motion
mode indicator m to each cell in the grid. m represents the
motion mode of the action used to reach the cell. Based on
this definition of a torso pose grid, we can rewrite Ptp as:

Ptp = {(m1, pt,1
)
,
(
m2, pt,2

)
,,

(
mNp , pt,Np

)} (16)

where mi is the motion mode used to reach torso pose pt,i ,
(note that m1 can be any motion mode). This change in the
torso pose grid will quadruple the number of cells. Although
it is possible to only include motion mode information in the
edges of the graph and allow the nodes to remain in SE(2),
we use the information of the motion mode at each node

123

Autonomous Robots

to avoid frequent changes in motion modes along the path.
We do this by assigning a penalty for changingmotionmodes
(see below). It is important tominimize the number ofmotion
mode changes because each segment of the path is assigned a
single motion mode. Frequent changes in motion mode will
create many segments, and thus create many subgoals along
the torso pose guiding path. This adds additional (possibly
unnecessary) constraints to the original problem as well as
increasing the number of calls to PFS and RA, so we would
like to reduce the number of segments by reducing the num-
ber of motion changes. The algorithm to find an optimal Ptp
is discussed below.

9.1 Torso pose guiding path planning

To find an optimal Ptp, we formulate the search problem as a
graph search problem, and solve itwith theA*algorithm.The
edge cost �gtp between two cells

(
mi , pt,i

)
and

(
m j , pt, j

)
is defined as

�gtp
((
mi , pt,i

)
,
(
m j , pt, j

)) =
l
pt,i
pt , j

+ ws + wtr�gtr
(
pt,i , pt, j ,m j

) + M
(
mi ,m j

)

M
(
mi ,m j

) =
{
0, mi = m j

wm, mi �= m j

(17)

where l
pt,i
pt , j

is the distance between torso pose pt,i and pt, j ,
wm is a fixed motion mode changing cost,�gtr (0 ≤ �gtr ≤
1) is the traversability cost associatedwith the transition from
pt,i to pt, j using motion modem j (described in Sect. 8), and
wtr is a weighting factor for �gtr . Possible actions are the
combination of torso pose transitions shown in Fig. 8 and the
motion modes used. The heuristic function for planning the
torso pose guiding path is

htp
((
mi , pt,i

)) = dtgoal(pt,i) + ws
dtgoal(pt,i)

dt,max
(18)

where dtgoal(pt,i) is the Euclidean distance of the torso pose
pt,i to the goal, and dt,max is themaximum traveling distance
of the torso pose in one transition. The first and the second
term are the admissible estimates of the remaining distance
to the goal and the remaining transitions needed to go to the
goal, respectively. Since we do not know what regions of the
environment we need to traverse to reach the goal and which
modes will be used in the future, the heuristic function does
not contain any information related to motion mode change
and traversability.

9.2 Torso pose policy planning for heuristic in PFS

In Sect. 6, we briefly introduced the heuristic function used
in PFS in this paper. Now that we have defined the torso

planning problem in the previous section, we are ready to
specify the heuristic precisely: To create a useful heuristic
for PFS that is aware of obstacles and gaps, we first compute
a policy for the torso pose. To compute the torso pose policy,
similar to the approach for planning the torso pose guiding
path, we plan on the torso pose grid, and adopt the edge cost
definition in Eq. 17, but use Dijkstra’s algorithm to compute
the length of the path going from each cell to the goal cell.
PFS queries this policy with the torso pose pt of a contact
state it is considering to get the length of the path ltgoal(pt) of
going from the cell containing pt to the goal cell. gtp is then
used to compute the heuristic of PFS for that contact state:

gtp (pt ,m) = ltgoal(pt) + ws Ns + wtr gtr (m) (19)

where Ns is the number of steps taken along that path. Note
that we do not include the M term because there is only a
single mode per segment.

Since the edge cost of contact-space planning does not
have cost corresponding to gtr in Eq. 19, h (pt ,m) is inad-
missible, and the returned contact transition sequence can be
suboptimal. However, in a large unstructured environment,
the main challenge is to efficiently find a feasible solution.
Therefore, our goal is to increase the success rate in finding
a feasible solution. gtr helps the planner identify the part of
the environment richer in contact transition to traverse, and
thus increase the success rate.

10 Torso pose guiding path segmentation

As mentioned in Sect. 5, we would like to segment the
torso pose guiding path based on the motion modes and the
traversability of each transition to use appropriate motion
modes and planning methods (PFS or RA) for each segment.
To segment the torso pose guiding path Ptp, we first define
the torso pose transition sequence. Given a torso pose guid-
ing path Ptp defined in Eq. 16, we can extract the torso pose
transition sequence Tδ

(
Ptp

)
defined as:

Tδ

(
Ptp

) = {δ1, δ2,, δNδ }
δi = (

v
(
pt,i , pt,i+1

)
,�θ

(
pt,i , pt,i+1

)
,mi+1

) (20)

where Nδ = Np − 1 is the number of transitions in Ptp.
To solve the segmentation problem, we are looking for a
partition of Tδ such that each subset in the partition contains
torso pose transitions with continuous indices. For example,
Tδ = {{δ1}, {δ2}, {δ3}}, {{δ1, δ2}, {δ3}} and {{δ1, δ2, δ3}} are
valid segmentations, but {{δ1, δ3}, {δ2}} is not. We denote the
set of all valid partitions of Tδ as 	(Tδ).

We segment the torso pose transition sequence using a
two-stage approach. First, we segment at every motion mode
change point in Tδ , and denote this segmentation as ψmm .

123

Autonomous Robots

Algorithm 3: Torso Pose Guiding Path Segmentation

Input : Tδ(Ptp) (Torso pose transition sequence);
ψmm ← GetMotionModeSegmentation

(
Tδ(Ptp)

)
;

ψ∗ ← { };
for ψmm [k] in ψmm do

if |ψmm [k]| ≥ Nseg then
ψ∗
k ← GetOptimalSegmentation (ψmm [k]), (Eq. 21);

end
else

ψ∗
k ← ψmm [k];

end
ψ∗ ← ψ∗ ∪ ψ∗

k ;
end
return ψ∗;

We then further segment each segment of ψmm based on
the traversability. However, we would like to avoid segments
that are too short. Therefore, if the number of transitions in
a segment is less than a threshold Nseg , we do not segment
it further; otherwise, we solve the following optimization
problem to further decompose each segment of ψmm :

argmax
ψ∈	(ψmm [k])

|ψ |∑
i=1

∣∣∣∣∣∣
∑

δ j∈ψ[i]
�gtr

(
v

(
δ j

)
,m

(
δ j

)) − |ψ[i]| Ttr
∣∣∣∣∣∣

subject to |ψ[i]| ≥ Nseg

(21)

where ψ is a segmentation of the kth torso pose transition
sequence, and ψ[i] is the i th segment in that segmenta-
tion. Since we decide which contact transition sequence
generation method is used in each segment based on its
traversability, we define the traversability cost threshold,
Ttr ∈ R

+, to serves as the decision boundary. This opti-
mization will try to generate segments whose average �gtr
is above or below Ttr as much as possible , so that our seg-
ments consist of torso pose transitions which all have similar
traversability. We also add a constraint to exclude segments
that are too short (containing fewer than Nseg transitions).
Again, it is important to reduce the number of segments
for the reasons described in Sect. 9. To solve the optimiza-
tion problemwe could apply existing segmentation methods,
however we found that the space of segmentations was rel-
atively small and the objective function was very fast to
evaluate, thus instead we enumerate all segmentations, com-
pute the cost of each, and choose the one that is optimal. The
segmentation process is summarized in Algorithm 3.

After the segmentation, the contact transition sequence
generation method μ(ψ∗[k]) ∈ {PFS,RA} for each segment
ψ∗[k] ∈ ψ∗ can be decided using the threshold Ttr . In this
work, we tested two ways to make the decision. The first
is to decide based on the average �gtr in the segment. If
�gtr is above Ttr , that means the region around this torso
pose path segment is more difficult, so we use RA to gen-

Algorithm 4: Decide Segment Exploration Order

Input : ψ∗ (Optimal segmentation);
ψexplore ← { };
ψPFS ← { };
for ψ∗[k] in ψ∗ do

if μ(ψ∗[k]) = PFS then
ψPFS ← ψPFS ∪ ψ∗[k];

end
else

if μ(ψ∗[k]) = RA then
ψexplore ← ψexplore ∪ ψ∗[k] ∪ ψPFS;
ψPFS ← { };

end
end

end
ψexplore ← ψexplore ∪ ψPFS;
return ψexplore;

erate the contact transition sequence. We use PFS for other
segments. The second approach is based on the observation
that a segment may have low average�gtr , but contain some
spikes in �gtr , and cause the PFS to be stuck in that part of
the segment. Therefore, the second approach compares the
maximum of �gtr with Ttr . We compare the performance of
these methods in Sect. 12.

10.1 Deciding segment exploration order

After the segmentation is complete, each segment is planned
for using either PFS or RA separately. To better connect
motion plans in each segment, if a segment using RA directly
follows a segment using PFS, we can generate the contact
transition sequence of the latter segment first, and set the first
stance in the latter segment as the goal for PFS in the pre-
vious segment. Similarly, if two neighboring segments both
use PFS, we will always explore the previous one first, so
that the latter segment can use the last stance of the previous
segment as the initial state. By doing this, we automatically
connect these two segments using PFS. The only exception is
the connection between two segments both using RA. In this
case, we will run another PFS starting from the last stance
in the previous segment, and set the first stance in the latter
segment as goal. Algorithm 4 shows the procedure used to
decide the segment exploration order.

11 Connecting the contact sequences

As discussed in Sect. 10.1, except for the case that the pre-
vious segment uses PFS and the latter segment uses RA, the
planner for the previous segment will lead the robot to a
goal region around the goal of the previous segment. If the
motion modes of the two segments are different, it is possi-
ble that the last stance of the previous segment is not close

123

Autonomous Robots

enough to the next segment to make the contacts required
by the motion mode of the next segment, which causes the
search to fail. Furthermore, to connect two segments both
using RA, the connecting planner, which uses PFS, has to
find a contact transition sequence in the neighborhood of the
connecting torso pose to the first stance of the latter seg-
ment. In a contact-scarce region, this could be difficult to
plan.

We solve both of the above issues by broadening the search
space.We use PFS to plan the connection sequence and allow
it to use any motion mode near the connecting torso pose.
This approach has a high branching factor but the connection
region (which is the same size as a goal region) is very small,
so the computation-time impact is limited.

12 Experiments

In our experiments, we first show the performance of the
traversability prediction model. We then demonstrate the
performance of the proposed framework in challenging
environments by comparing with a set of baselines. These
baselines include simplifications of our methods (i.e. remov-
ing some components) as well as alternative cost functions
for torso pose guiding path planning, inspired by Brandao
et al. (2019). We evaluate performance by showing the suc-
cess rate and planning time for finding a feasible contact
transition sequence using each approach. We also check if
the quasi-static plan produced by solving inverse kinemat-
ics for a planned contact sequence is feasible. Finally, we
extend the application of our framework to a mobile manip-
ulator, and show the advantage of the proposed framework
using traversability estimates in a real robot experiment.

The experiments were run on an Intel Core i7-4790K
4.40 GHz CPU with 16GB RAM, and we implemented our
algorithms in OpenRAVE (Diankov 2010). We tested our
algorithms on the Escher humanoid robotmodel (Knabe et al.
2015). Escher has 6 and 7 degrees of freedom (DOF) for each
leg and arm, respectively, and 1 waist yaw DOF.

12.1 Traversability predictionmodels’performance

In this section, we show the performance of the traversabil-
ity prediction models of different motion modes. Although
there are four motion modes, we take advantage of the sym-
metric geometry of humanoid robots, and train three kinds
of traversability prediciton models: Feet Only, Feet and One
Palm and All End-Effectors with 10,000 transitions for each
model. We tested the models in randomly-tilted surface envi-
ronments shown in Fig. 5, and each model is tested with
100 torso pose transitions. The traversability predicitonmod-
els predict the number of useful footstep combinations |�+|
given the surrounding environment. Since the traversability

prediction models are regressors, we show their mean abso-
lute error compared to the range of the ground truth in test
data, as shown in Table 1. Clearly the error is quite small
relative to the range of data.

12.2 Results for the full framework and comparisons

We evaluate the performance of the proposed framework in
planning to navigate through two types of environments and
we compare the proposed framework with three simplifica-
tions: The first baseline is the most basic contact-space PFS
planner. It does not use traversability and has no specified
motion mode (PFS Only). The second baseline is also PFS,
but now we allow it to use traversability in torso pose guid-
ing path planning, however we do not specify the motion
mode (PFS using Traversability). Since these planners are
not required to use any palm contacts, they use the feet-
only motion mode heuristic to estimate the cost-to-go. The
third baseline uses our segmentation approach but only uses
PFS to plan motion in each segment. Since it only uses PFS,
we segment the torso pose guiding path only when motion
mode changes (Segmentation+PFS). For the proposed frame-
work, we also implemented two versions using different
decision criteria to decide whether to plan with PFS or RA
for a given segment: mean(�gtr) (Our framework-Mean)
and max(�gtr) (Our framework-Max).

We also show comparisons with variants of the pro-
posed framework inspired by Brandao et al. (2019). Brandao
et al. (2019) presented a framework which generates guid-
ing paths for a quadruped robot to traverse different regions
using different controllers. While the idea is similar to our
approach, which can use different motion modes for differ-
ent regions, the cost definition in the guiding path planning
is fundamentally different and thus we cannot present a side-
by-side comparison. However, to avoid cost weight tuning,
Brandao et al. (2019) also emphasized using a cost aggre-
gation method which normalizes each term in edge cost by
its range. Each cost term is thus between 0 and 1. Thus,
inspired by Brandao et al. (2019), we create variants of the
proposed approach (Segmentation+PFS, Our Framework-
Max and Our Framework-Mean) by normalizing each cost
term in Eq. 18 to be from 0 to 1 (NC Segmentation+PFS,
Our Framework-NC-Max and Our Framework-NC-Mean).
Comparing to this cost normalization approach helps show
the degree of sensitivity of our framework to the tuning of
weights in the cost function.

We use the following parameter values: Nmp = 50, Ttr =
0.3, Nseg = 5, ws = 3, wm = 2, wtr = 10, rg = 0.2m. The
torso path grid is discretized to 0.15m resolution in x and y,
and 30◦ in θ .

In Sect. 6, we described that the PFS planner uses end-
point balance constraints to check balance. To verify if this
simplification is reasonable, we did the following: For all

123

Autonomous Robots

Table 1 Traversability prediction models performance (units are the number of useful footstep combinations)

Feet only Feet and one palm All end-effectors

Mean absolute error 1.09 1.53 1.31

Ground truth range [0, 32] [0, 26] [0,28]

Fig. 10 Executing a planned contact transition sequence in Left: a two-corridor environment. Right: a two-staircase environment

the contact transition sequences returned by any method we
evaluated,we test if a quasi-statically balanced configuration-
space path can be found for each contact transition. We ran
this test by enumerating many different parabolic paths for
the swing end-effector of each contact transition, solving
inverse kinematics for each parabola, and checking if there
exists a quasi-statically balanced path. The results show that
we can find quasi-statically balanced configuration paths in
496 out of 498 contact transition sequences returned by all
baselines and the proposed framework in two test environ-
ments, as shown in Table 2. This high success-rate suggests
that we are indeed making reasonable assumptions about the
feasibility of our transitions in difficult environments. The
two failed cases are caused by the robot attempting a long
foot contact transition with a very tilted standing foot contact
and a palm contact far from the new foot contact. Although
palm contacts help balance the robot, it also creates more
constraints on the robot’s kinematic solutions, which cause
the inverse kinematics to fail in some rare case. We believe
that the problem can be addressed with a more conservative
contact transition model.

12.2.1 Two-corridor environment test

In the two-corridor environment, we construct the envi-
ronment as two wide rooms connected with two parallel
corridors (see Fig. 10). The environment is formedwith 1.5m
by 1.5m patches, each of which is randomly generated as
either flat ground or rubble with 50% probability. The rubble
patches are formedwith quadrilateral surfaceswhose roll and
pitch are sampled from a uniform distribution in [−20◦, 20◦].
The walls are also generated in the same manner. We set the
start and the goal to be a random location in the lower and

the upper room, respectively. We set a 500 second time limit.
If the planner finds a contact transition sequence within the
time limit in a trial, the trial is counted a success. We run
on 50 testing environments, and compare the performance of
the different approaches in terms of success rate and planning
time for the successful trials (see Table 2).

The results show that using traversability in PFS helps
improve success rate, although it is not a large improvement.
Incorporating traversability to get the Segmentation+PFS
approach provides a larger boost in performance, improving
success rate further by 20%. Using our full framework (i.e.
introducing RA to plan for difficult segments) outperforms
the other approaches in terms of success rate, while keeping
the planning time low. Setting the method decision criterion
based on themax traversability cost improves the success rate
at the cost of higher average planning time. This is because
it uses RA in some regions that can be solved quickly using
PFS. The time required to connect segments also increases
because there aremore segmentswhich useRA, sowe require
additional time to connect those segments.

Compared to our framework using tuned cost weights, the
normalized cost approach (NCSegmentation+PFS) performs
slightly worse for Segmentation+PFS. However, when RA is
used (i.e. the full framework), the performance of our cost
weight and the normalized cost weight is very similar. The
reason for this result is that the normalized cost approach
has relatively lower weight on traversability cost compared
to the tuned cost, and more segments of the guiding path
go through regions which harder to traverse. Therefore, the
normalized cost approach (Our Framework-NC-Mean and
Our Framework-NC-Max) using the full framework has a
higher ratio of the segments using RA as compared to our
framework using tuned cost weights. Yet using RA for those

123

Autonomous Robots

Ta
bl
e
2

T
he

re
su
lt
fo
r
tw
o-
co
rr
id
or

te
st
en
vi
ro
nm

en
ta
nd

tw
o-
st
ai
r
te
st
en
vi
ro
nm

en
t

E
nv
ir
on

m
en
t

A
pp

ro
ac
h

Su
cc
es
s
ra
te

Q
ua
si
-s
ta
tic

ex
ec
ut
io
n

su
cc
es
s
ra
te

A
ve
ra
ge

nu
m
be
r

of
se
gm

en
ts

(P
FS

/R
A
/T
ot
al
)

Pl
an
ni
ng

tim
e
(s
)

To
rs
o
pa
th

pl
an
ni
ng

To
rs
o
pa
th

se
gm

en
ta
tio

n
C
on

ta
ct
sp
ac
e

pl
an
ni
ng

Se
gm

en
tc
on
ta
ct

se
qu
en
ce

co
nn

ec
tio

n

To
ta
lt
im

e

Tw
o-
co
rr
id
or

en
vi
ro
nm

en
t

PF
S
on
ly

13
/5
0

13
/1
3

1/
0/
1

6.
51

0
20
0.
01

0
20
6.
52

PF
S
us
in
g
tr
av
er
sa
bi
lit
y

17
/5
0

17
/1
7

1/
0/
1

24
.0
5

0
11
4.
05

0
13
8.
10

Se
gm

en
ta
tio

n+
PF

S
27
/5
0

27
/2
7

4.
11
/0
/4
.1
1

24
.8
1

0.
01

13
8.
95

0
16
3.
77

O
ur

fr
am

ew
or
k-
M
ea
n

38
/5
0

38
/3
8

4.
08
/1
.6
3/
5.
71

25
.6
3

0.
03

96
.9
1

1.
76

12
4.
33

O
ur

fr
am

ew
or
k-
M
ax

42
/5
0

41
/4
2

2.
78
/2
.9
3/
5.
71

26
.1
6

0.
03

10
9.
03

17
.7
3

15
2.
95

N
C
se
gm

en
ta
tio

n+
PF

S
23
/5
0

23
/2
3

3.
70
/0
/3
.7
0

25
.7
4

0.
01

14
0.
51

0
16
6.
25

O
ur

fr
am

ew
or
k-
N
C
-M

ea
n

39
/5
0

39
/3
9

2.
95
/2
.7
7/
5.
72

23
.9
8

0.
27

10
0.
14

2.
22

12
6.
60

O
ur

fr
am

ew
or
k-
N
C
-M

ax
41
/5
0

41
/4
1

1.
83
/4
.6
1/
6.
44

23
.2
6

0.
25

11
0.
59

5.
44

13
9.
54

Tw
o-
st
ai
rc
as
e
en
vi
ro
nm

en
t

PF
S
on
ly

17
/5
0

17
/1
7

1/
0/
1

6.
47

0
18
1.
66

0
18
8.
13

PF
S
us
in
g
tr
av
er
sa
bi
lit
y

23
/5
0

23
/2
3

1/
0/
1

24
.7
4

0
14
6.
05

0
17
0.
79

Se
gm

en
ta
tio

n+
PF

S
35
/5
0

34
/3
5

5.
72
/0
/5
.7
2

23
.9
1

0.
01

11
5.
62

0
13
9.
54

O
ur

fr
am

ew
or
k-
M
ea
n

39
/5
0

39
/3
9

4.
31
/3
.1
8/
7.
49

24
.7
4

0.
70

11
7.
66

1.
34

14
4.
44

O
ur

fr
am

ew
or
k-
M
ax

38
/5
0

38
/3
8

2.
74
/4
.7
5/
7.
49

24
.6
7

0.
71

10
8.
11

5.
19

13
8.
68

N
C
se
gm

en
ta
tio

n+
PF

S
32
/5
0

32
/3
2

4.
69
/0
/4
.6
9

25
.3
7

0.
01

12
9.
93

0
15
5.
30

O
ur

fr
am

ew
or
k-
N
C
-M

ea
n

37
/5
0

37
/3
7

3.
03
/4
.1
1/
7.
14

23
.6
9

0.
40

10
8.
84

3.
10

13
6.
03

O
ur

fr
am

ew
or
k-
N
C
-M

ax
37
/5
0

37
/3
7

1.
86
/5
.7
0/
7.
57

23
.9
1

0.
40

11
0.
31

8.
65

14
3.
27

T
he

bo
ld

fa
ce

m
ar
ks

th
e
be
st
re
su
lt
am

on
g
al
ld

if
fe
re
nt

ap
pr
oa
ch
es

co
m
pa
re
d
in

th
e
ex
pe
ri
m
en
ts
.I
n
pa
rt
ic
ul
ar
,i
tm

ar
ks

th
e
ap
pr
oa
ch
es

w
ith

hi
gh
es
ts
uc
ce
ss

ra
te
an
d
ap
pr
oa
ch
es

w
ith

sh
or
te
st
to
ta
l

tim
e

123

Autonomous Robots

Fig. 11 The mobile manipulator used in the experiment. The end-
effectors are padded with foam covers to reduce damage on the surface
of the end-effector when making contacts

difficult segments is effective, so the success rate is similar
to our framework using tuned cost weights. This is actually
a very encouraging result, because it shows that even if we
don’t use human intuition to tune the weights in our cost
function (and thus move through more difficult regions in
the environment than necessary), our overall framework is
still able to plan effective contact sequences.This result shows
that the proposed approach does not require intensivemanual
weight tuning since automatic weighting achieves similar
performance.

12.2.2 Two-staircase environment test

A two-staircase environment is shown in Fig. 10. Testing
in this environment confirms that the framework can be
applied to environments with large height changes even
though the torso pose guiding path is defined in SE(2).
In this environment, we let the upper room to be elevated
by a random amount between 1 and 1.5m, and the height
difference is equally distributed over 9 stairs. As in the
two-corridor environment, each stair could be a flat surface
or rubble with 50% probability. We use the same timeout
and number of test environments as in the previous test.
In this test, we again see that using segmentation gives a
large performance improvement over the standard planning
approach (24% increased success rate). We also see that
our full framework (i.e. including RA) slightly outperforms
the approach using only PFS. The improvement from using
RA may be limited here because the stairs in the staircase
are relatively small, so even if some stairs are rubble, there
tend to be many flat steps, which are easy for PFS to tra-
verse. As we observed in the two-corridor environment, the
variants of the proposed framework using normalized cost
(Our Framework-NC-Mean and Our Framework-NC-Max)
achieve similar performance as our framework.

Fig. 12 The experiment setting: The mobile manipulator moves along
a steep ramp while using palm contacts to stabilize itself. The robot has
to find a contact transition sequence to move across the window, and
can only make contact to the four cracked wall surfaces showing in grey

12.3 Experiment on a real robot platform—amobile
manipulator on a steep ramp

In this experiment, we demonstrate the motion of a real
robot executing the contact transition sequence generated by
the proposed framework. We use a mobile manipulator to
demonstrate a real robot motion based on a planned contact
transition sequence in a disaster-response scenario. Figure 11
shows themobilemanipulator used in this experiment. It is an
HDT Adroit dual-arm manipulator mounted on a Clearpath
Husky robot. The dual-armmanipulator is equippedwith two
7-DOF arms, and a 2-DOF (pitch and yaw) torso.

In our testing scenario the robot traverses an earthquake
disaster site. A fallen ceiling forms a ramp which is so steep
that the robot will tip over when driving on the ramp unless
it braces itself with its hands (Fig. 12). The robot has to
plan contact transition sequences on the cracked and tilted
wall. It can take one of two paths, either above or under the
window, to reach the goal.We set the goal to be slightly higher
than where the robot starts, so the path above the window is
slightly shorter in distance, although it is more difficult to
traverse.

We also evaluated the end-effector position error for this
robot to verify the feasibility of reliably achieving the con-
tacts we planned. To compute the end-effector error, we used
a Vicon motion-capture system to estimate the ground-truth
position of the base and the end-effectors. We then gener-
ated end-effector trajectories in the the relevant part of the
robot’s workspace (with the robot facing to the side and
leaning forward) and computed the difference between the
end-effector position generated via forward kinematics on
the planned joint angles and the end-effector position from
the motion capture system. We found that the average end-
effector error was 18.8 mm with a standard deviation of 5.08
mm for the left arm and 24.9mmwith a standard deviation of

123

Autonomous Robots

2.75 mm for the right arm. Thus it was quite feasible to exe-
cute the end-effector trajectories computed by our method
on the robot in the environment shown in Fig. 12 because
we do not require a high contact placement accuracy to tra-
verse this environment. In futurework, itwould be interesting
to explore methods to plan for more difficult environments
where precise contact is required to complete the task by
accounting for the end-effector position error in planning.

To help the robot deal with actuation error in the arms,
we padded the end-effectors with soft foam covers. This is
similar to compliant ankles adopted in many legged robot
to help the robot better comply to uneven terrains. Since the
joints are position-controlled with high stiffness, this added
compliance can also help prevent hard collisions. The foam
also provides higher friction which helps prevent the end-
effectors from sliding when the base moves.

Since the experiment requires traveling only a short dis-
tance with the base, the robot’s position is tracked by
the base’s odometer. In larger environments, a localization
method such as a Kalman or particle filter would be nec-
essary. We also coordinated the base and upper body to
maintain the end-effector positions while the base moves.
To do this, we ran an inverse kinematics solver at 100Hz to
compute upper-body joint goals with base poses supplied by
the odometer. A PD controller is then used to track the joint
goals.We exploit the friction provided by the foam cover and
move the robot slowly so that the controller can prevent the
end-effector from sliding. This is important because sliding
can cause the robot to fall on the wall and potentially break
the arms. This experiment also shows that it is quite difficult
for a robot tomaintainmultiple contacts, especially if they do
not align with the direction of gravity, and still move quickly,
which is also part of the reason why executing multi-contact
motion for humanoid robots is still an open problem.

We compare the proposed framework with the PFS Only
planner, which does not consider traversability. The contact-
space planning for the mobile manipulator is analogous to
the formulation used in humanoid contact-space planning
shown in Sect. 6. We transform the ground described in
Sect. 6 to be the wall in the mobile manipulator experiment,
and the mobile manipulator is viewed as “walking” on the
wall, as shown in Fig. 12. To check quasi-static balance for
each contact transition in contact-space planning, we set the
base position to always align with the standing contact in
the x direction, and follow the end-point balance constraint
checking described in Sect. 6. The contact-space planner
plans palm contacts using the transition model in which the
new contact is [0.1, 0.4] meters in the x axis and [−0.2, 0.2]
meters in the z axis from the standing contact with discretiza-
tion resolution of 0.1 meter in both axes. The robot uses
circular contacts, so the contact orientation remains 0 degree
throughout the planning. To simplify the balance check, the
support region is approximated with a conservative square

Fig. 13 Left: The planned contact transition sequence using PFS Only.
Right: The planned contact transition sequence using the proposed
framework. Left and right palm contact are shown in red and green,
respectively

contact inside the circular contact. The torso pose transition
model is an 8-connected transition model in the torso pose
grid in theXZplane as shown in Fig. 12. Since the contact ori-
entation is always 0 degree, the torso orientation also remains
0 degree in the XZ plane. We use the following parameter
values for the proposed framework: ws = 3, wtr = 10.

Although this experiment uses a different platform which
is not a humanoid robot, we can still use the same approach
described in Sect. 8 to learn traversability estimates. For each
torso translation, we collect data over sampled randomly-
tilted surface environments, and train a traversability estima-
tor with the mobile manipulator’s contact transition model.
We also collected a motion plan library for the mobile
manipulator. However, there are abundant contacts in the test
environment. Therefore, in this test, the proposed framework
outputs a torso pose guiding path with only one segment, and
uses PFS (which accounts for traversability) for that segment.

The result in Fig. 13 shows that the proposed framework
has a much shorter planning time, but the resulting path takes
more steps. Since the PFS Only planner does not consider
traversability, the planner will explore the slightly-shorter
path above the window first. However, the gap created by the
pipe makes the path above the window require more steps
than the path under the window and the PFS Only planner,
misled by the heuristic, spends a large amount of time reject-
ing states around the gap before searching below thewindow.
Because our heuristic is not admissible, we do not find a plan
that is as short as the PFS Only planner’s, however we note
that a difference of two steps in this context is not very large.

13 Discussion

On the other hand, the proposed planner uses the traversabil-
ity estimates to identify that the gap caused by the pipe will
reduce the number of contact transitions available in that
region, and bias the PFS planner to take the path under the

123

Autonomous Robots

Fig. 14 Execution of the plan shown in Fig. 13 on the dual-arm mobile manipulator (Upper left: first frame, Lower right: last frame)

window. Therefore, the proposed planner is much faster than
the standard planner. However, the proposed heuristic, which
includes the traversability cost, is not admissible. Therefore,
the proposed planner produces contact transition sequences
with more steps.

Although the proposed framework is originally designed
for humanoid robots, we demonstrated that the application
of the traversability estimates is not limited to humanoids.
The experiment on the mobile manipulator shows potential
extension of the proposed approach to reduce the planning
time for different robot platforms which require contact-
space planning.With the real robot experiment, we also show
that the planned contact transition sequence is executable by
a real robot in Fig. 14 and the accompanying video. The
video demonstrates that the planner can plan quasi-statically
balanced motion for the mobile manipulator to slowly but
steadily execute the path on the slope.

As demonstrated in the results, the main advantage of the
proposed approach is to find contact transition sequences
with a high success rate. Therefore, neither PFSnorRA in our
approach optimizes the solution quality, such as the number
of contacts. However, based on the proposed framework, we
can further improve the solution quality if needed. PFS can
utilize the anytime nature of ANA* to improve the solution
over time. For RA, although the number of contacts is fixed
for each motion plan during the process, the solution can
be improved with post processing. One possible approach
to reduce the number of contacts for RA is to iteratively

sample contacts in the returned contact transition sequence
and remove that contact if the contact transition sequence is
still feasible without it.

In this work, only quasi-static balance is considered in
order to reduce the computational difficulty of the prob-
lem. Compared to dynamic feasibility, quasi-static balance is
faster to compute, but is more conservative, which makes it
harder for the contact-space planner to find a solution. Recent
work has addressed the computation time problem of evalu-
ating dynamic feasibility in contact-space planning. Lin et al.
(2019) use neural networks to predict motion dynamic feasi-
bility for a given robot to speed up the process, but it suffers
from accumulated error for longer planning horizons. Fern-
bach et al. (2018, 2020) efficiently evaluate the dynamic
feasibility of contact transitions, but they are conservative
in the selection of center of mass trajectories. Efficient eval-
uation of motion dynamic feasibility is still an active field
of study, and we would like to test our approach with these
methods in future work.

The torso pose guiding path provides informed guidance
for the contact-space planner to find a feasible contact tran-
sition sequence efficiently. From Table 2, we see that the
torso pose guiding path using traversability provides better
guidance than not considering traversability. However, it is
still possible that such guidance is misleading due to predic-
tion error in the traversability estimates. To recover from an
erroneous guiding path the region at which the contact-space
planner is stuck can be marked as low-traversability in the

123

Autonomous Robots

torso pose grid. The planner can then rerun the torso pose
guiding path planner to restart the planning process.

The proposed approach assigns either PFS or RA for
each segment of the torso pose guiding path based on the
traversability of each segment. In the unlikely event that RA
runs out of all Nmp motion plans in the library before time
out or before finding a feasible plan (Nmp = 50 in the exper-
iment), the planner will fall back to using PFS to try to find
a path for the segment. While PFS may not find a path in the
given time limit if the problem is difficult, this fallback can
be effective if the segment was erroneously assigned to RA
due to an error in the traversability estimator.

Despite our effort to improve the planner to find feasible
contact sequence in difficult environments, there are cases
when the proposed planner cannot find a solution. One direc-
tion to improve system reliability is to use a less conservative
and higher fidelity model, such as a configuration space opti-
mizer, specifically for regions where a solution cannot be
found with simplified models. Another common approach
to improve system reliability is to include a human operator
to help the robot when the planner cannot find a solution.
From industrial collaborative robots to autonomous driving,
it is common for human operators to take over when robot
autonomy fails in complicated situations. In our context, if
the planner is unable to find a feasible solution to proceed,
a human operator can suggest possible contact placements,
which can then be verified by the robot. A human operator
may also tele-operate the robot to clear out obstacles with its
arms before calling the planner again.

14 Conclusion

In this workwe proposed a framework to plan humanoid nav-
igation in unstructured environments using four predefined
motion modes. The framework jointly considers the motion
mode and the traversability of the environment to segment a
guiding path for the torso into easy- and difficult-to-traverse
segments and assigns the appropriate planning method to
each.

Considering traversability allows our framework to out-
perform an uninformed planner, and it allows us to segment
a guiding path into parts where PFS or RA may be most
appropriate. Our simulation experiments confirm that our
framework outperforms simplifications that don’t use all of
its components in large environments. They also show that
the framework is not very sensitive to cost function tun-
ing parameters. The real robot experiment demonstrates the
applicability of the proposed framework to a real robot in a
disaster scenario.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-021-09996-
3.

Funding Funding was provided by Office of Naval Research (US)
(N00014-17-1-2050).

References

Baudouin, L., Perrin, N., Moulard, T., Lamiraux, F., Stasse, O., &
Yoshida, E. (2011). Real-time replanning using 3d environment
for humanoid robot. In IEEE-RAS international conference on
humanoid robots (humanoids).

Brandao, M., Fallon, M., & Havoutis, I. (2019). Multi-controller
multi-objective locomotion planning for legged robots. In 2019
IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS)

Caron, S., Pham, Q., & Nakamura, Y. (2015). Leveraging cone double
description for multi-contact stability of humanoids with applica-
tions to statics and dynamics. In Robotics: Science and systems
(RSS).

Chestnutt, J., Kuffner, J., Nishiwaki, K., &Kagami, S. (2003). Planning
bipednavigation strategies in complex environments. In IEEE-RAS
international conference on humanoid robots (Humanoids).

Chilian, A., & Hirschmuller, H. (2009). Stereo camera based naviga-
tion of mobile robots on rough terrain. In IEEE/RSJ international
conference on intelligent robots and systems (IROS).

Chung, S., & Khatib, O. (2015). Contact-consistent elastic strips for
multi-contact locomotion planning of humanoid robots. In IEEE
international conference on robotics and automation (ICRA).

Cunningham, C., Whittaker, W. L., & Nesnas, I. A. (2017). Improving
slip prediction on mars using thermal inertia measurements. In
Robotics: Science and systems (RSS).

Deits, R., Tedrake, R. (2014). Footstep planning on uneven terrain with
mixed-integer convex optimization. In IEEE-RAS international
conference on humanoid robots (humanoids).

Diankov, R. (2010). Automated construction of robotic manipulation
programs. PhD thesis, Carnegie Mellon University.

Dornbush, A., Vijayakumar, K., Bardapurkar, S., Islam, F., Ito, M., &
Likhachev, M. (2018). A single-planner approach to multi-modal
humanoid mobility. In 2018 IEEE international conference on
robotics and automation (ICRA) (pp. 4334–4341).

Escande, A., Kheddar, A., Miossec, S., & Garsault, S. (2009). Plan-
ning support contact-points for acyclic motions and experiments
on HRP-2. Experimental Robotics, 2, 293–302.

Fang, Z., Yang, S., Jain, S., Dubey, G., Roth, S., Maeta, S., et al. (2017).
Robust autonomous flight in constrained and visually degraded
shipboard environments. Journal of Field Robotics, 34(1), 25–52.
https://doi.org/10.1002/rob.21670.

Fernbach, P., Tonneau, S., & Taïx, M. (2018) CROC: Convex resolution
of centroidal dynamics trajectories to provide a feasibility criterion
for the multi contact planning problem. In IEEE/RSJ international
conference on intelligent robots and systems (IROS).

Fernbach, P., Tonneau, S., Stasse, O., Carpentier, J., & Taïx, M.
(2020). C-CROC: Continuous and convex resolution of centroidal
dynamic trajectories for legged robots in multicontact scenarios.
IEEE Transactions on Robotics, 36(3), 676–691. https://doi.org/
10.1109/TRO.2020.2964787.

Grey,M. X., Liu, C.K., &Ames, A. D. (2016). Traversing environments
using possibility graphs with multiple action types. arXiv e-prints

Grey, M. X., Ames, A. D., Liu, C. K. (2017). Footstep and motion
planning in semi-unstructured environments using randomized
possibility graphs. In: IEEE International Conference on Robotics
and Automation (ICRA).

Griffin, R. J., Wiedebach, G., McCrory, S., Bertrand, S., Lee, I., &
Pratt, J. (2019). Footstep planning for autonomous walking over
rough terrain. In: 2019 IEEE-RAS 19th international conference

123

https://doi.org/10.1007/s10514-021-09996-3
https://doi.org/10.1007/s10514-021-09996-3
https://doi.org/10.1002/rob.21670
https://doi.org/10.1109/TRO.2020.2964787
https://doi.org/10.1109/TRO.2020.2964787

Autonomous Robots

on humanoid robots (humanoids) (pp. 9–16). https://doi.org/10.
1109/Humanoids43949.2019.9035046.

Hornung, A., Dornbush, A., Likhachev, M., & Bennewitz, M.
(2012). Anytime search-based footstep planning with suboptimal-
ity bounds. In: IEEE-RAS international conference on humanoid
robots (humanoids).

Kanoun, O., Yoshida, E., & Laumond, J. P. (2009). An optimization
formulation for footsteps planning. In IEEE-RAS international
conference on humanoid robots (humanoids).

Knabe, C., Seminatore, J., Webb, J., Hopkins, M., Furukawa, T.,
Leonessa, A., & Lattimer, B. (2015). Design of a series elastic
humanoid for the DARPA robotics challenge. In IEEE-RAS inter-
national conference on humanoid robots (humanoids).

Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., & Inoue, H. (2001).
Footstep planning among obstacles for biped robots. In: IEEE/RSJ
international conference on intelligent robots and systems (IROS).

Kumagai, I., Morisawa, M., Benallegue, M., & Kanehiro, F. (2019).
Bipedal locomotion planning for a humanoid robot supported by
arm contacts based on geometrical feasibility. In IEEE-RAS inter-
national conference on humanoid robots (humanoids).

Lin, Y., & Berenson, D. (2016). Using previous experience for
humanoid navigation planning. In IEEE-RAS international con-
ference on humanoid robots (humanoids).

Lin, Y., & Berenson, D. (2017). Humanoid navigation in uneven terrain
using learned estimates of traversability. In: IEEE-RAS interna-
tional conference on humanoid robots (humanoids).

Lin, Y., & Berenson, D. (2018). Humanoid navigation planning in large
unstructured environments using traversability-based segmenta-
tion. In IEEE/RSJ international conference on intelligent robots
and systems (IROS).

Lin, Y., Ponton, B., Righetti, L., & Berenson, D. (2019). Efficient
humanoid contact planning using learned centroidal dynamics pre-
diction. In: International conference on robotics and automation
(ICRA).

Maier, D., Lutz, C., & Bennewitz, M. (2013) Integrated perception,
mapping, and footstep planning for humanoid navigation among
3d obstacles. In: 2013 IEEE/RSJ international conference on intel-
ligent robots and systems (pp. 2658–2664). https://doi.org/10.
1109/IROS.2013.6696731.

Michel, P.,Chestnutt, J.,Kuffner, J.,&Kanade,T. (2005).Vision-guided
humanoid footstep planning for dynamic environments. In IEEE-
RAS international conference on humanoid robots (humanoids).

Scherer, S., Rehder, J., Achar, S., Cover, H., Chambers, A., Nuske, S., &
Singh, S. (2012). River mapping from a flying robot: State estima-
tion, river detection, and obstacle mapping. Autonomous Robots,
33(1–2), 189–214. https://doi.org/10.1007/s10514-012-9293-0.

Shneier, M., Chang, T., Hong, T., Shackleford, W., Bostelman, R., &
Albus, J. S. (2008). Learning traversabilitymodels for autonomous
mobile vehicles. Autonomous Robots, 24(1), 69–86.

Suger, B., Steder, B., & Burgard, W. (2015). Traversability analysis
for mobile robots in outdoor environments: A semi-supervised
learning approach based on 3d-lidar data. In IEEE international
conference on robotics and automation (ICRA).

Tonneau, S., Prete, A. D., Pettré, J., Park, C., Manocha, D., &Mansard,
N. (2018). An efficient acyclic contact planner for multiped robots.
IEEE Transactions on Robotics, 34(3), 586–601.

van den Berg, J., Shah, R., Huang, A., & Goldberg, K. (2011). Anytime
nonparametric A*. In AAAI.

Wellhausen, L., Dosovitskiy, A., Ranftl, R., Walas, K., Cadena, C., &
Hutter, M. (2019). Where should I walk? Predicting terrain prop-
erties from images via self-supervised learning. IEEE Robotics
andAutomationLetters, 4(2), 1509–1516. https://doi.org/10.1109/
LRA.2019.2895390.

Wermelinger, M., Fankhauser, P., Diethelm, R., Krüsi, P., Siegwart,
R., & Hutter, M. (2016). Navigation planning for legged robots
in challenging terrain. In IEEE/RSJ international conference on
intelligent robots and systems (IROS).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Yu-Chi Lin received a B.S. and
a M.S. in Electrical Engineering
from National Taiwan University
in 2012 and 2014, respectively,
and received Ph.D. degree from
Robotics Program, University of
Michigan in 2020. He is currently
a software engineer at Nuro, Inc.
His research focuses on robot motion
planning, humanoid robotics, and
improving motion planning with
data driven approaches.

Dmitry Berenson received a B.S.
in Electrical Engineering from Cor-
nell University in 2005 and received
his Ph.D. degree from the Robotics
Institute at Carnegie Mellon Uni-
versity in 2011. He completed a
post-doc at UC Berkeley in 2011
and was an Assistant Professor in
Robotics Engineering and Com-
puter Science at WPI 2012-2016.
He is currently an Assistant Pro-
fessor in the EECS Department
and Robotics Institute at the Uni-
versity of Michigan. He received
the IEEE RAS Early Career Award

and the NSF CAREER award. His current research focuses on motion
planning and manipulation.

123

https://doi.org/10.1109/Humanoids43949.2019.9035046
https://doi.org/10.1109/Humanoids43949.2019.9035046
https://doi.org/10.1109/IROS.2013.6696731
https://doi.org/10.1109/IROS.2013.6696731
https://doi.org/10.1007/s10514-012-9293-0
https://doi.org/10.1109/LRA.2019.2895390
https://doi.org/10.1109/LRA.2019.2895390

	Long-horizon humanoid navigation planning using traversability estimates and previous experience
	Abstract
	1 Introduction
	2 Related work
	3 Definitions
	4 Problem statement
	5 Method overview
	6 The planning from scratch (PFS) approach
	7 The retrieve and adapt (RA) approach
	7.1 Constructing the motion plan library
	7.2 Querying the motion plan library

	8 Estimating traversability
	8.1 Traversability measure
	8.2 Computing contact clearance feature to estimate traversability

	9 Torso pose guiding path
	9.1 Torso pose guiding path planning
	9.2 Torso pose policy planning for heuristic in PFS

	10 Torso pose guiding path segmentation
	10.1 Deciding segment exploration order

	11 Connecting the contact sequences
	12 Experiments
	12.1 Traversability prediction models' performance
	12.2 Results for the full framework and comparisons
	12.2.1 Two-corridor environment test
	12.2.2 Two-staircase environment test

	12.3 Experiment on a real robot platform—a mobile manipulator on a steep ramp

	13 Discussion
	14 Conclusion
	References

