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Abstract
We extend the learning from demonstration paradigm by providing a method for learning unknown constraints shared
across tasks, using demonstrations of the tasks, their cost functions, and knowledge of the system dynamics and
control constraints. Given safe demonstrations, our method uses hit-and-run sampling to obtain lower cost, and thus
unsafe, trajectories. Both safe and unsafe trajectories are used to obtain a consistent representation of the unsafe set
via solving an integer program. Our method generalizes across system dynamics and learns a guaranteed subset of
the constraint. Additionally, by leveraging a known parameterization of the constraint, we modify our method to learn
parametric constraints in high dimensions. We also provide theoretical analysis on what subset of the constraint and
safe set can be learnable from safe demonstrations. We demonstrate our method on linear and nonlinear system
dynamics, show that it can be modified to work with suboptimal demonstrations, and that it can also be used to learn
constraints in a feature space.
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1 Introduction
Inverse optimal control and inverse reinforcement learning
(IOC/IRL) (Ratliff et al. (2006); Abbeel and Ng (2004);
Argall et al. (2009); Ng and Russell (2000)) have proven
to be powerful tools in enabling robots to perform complex
goal-directed tasks. These methods learn a cost function
that replicates the behavior of an expert demonstrator
when optimized. However, planning for many robotics and
automation tasks also requires knowing constraints, which
define what states or trajectories are safe. For example,
the task of safely and efficiently navigating an autonomous
vehicle can naturally be described by a cost function trading
off user comfort and efficiency and by the constraints
of collision avoidance and executing only legal driving
behaviors. In some situations, constraints can provide a
more interpretable representation of a behavior than cost
functions. For example, in safety critical environments,
recovering a hard constraint or an explicit representation
of an unsafe set in the environment is more useful than
learning a “softened” cost function representation of the
constraint as a penalty term in the Lagrangian. Consider the
autonomous vehicle, which absolutely must avoid collision,
not simply give collisions a cost penalty. Furthermore,
learning global constraints shared across many tasks can be
useful for generalization. Again consider the autonomous
vehicle, which must avoid the scene of a car accident: this
is a shared constraint that holds regardless of the task it is
trying to complete.

While constraints are important, it can be impractical
for a user to exhaustively program into a robot all the
possible constraints that it should obey when performing
its repertoire of tasks. To avoid this, we consider in this
paper the problem of recovering the latent constraints within

expert demonstrations that are shared across tasks in the
environment. Our method is based on the key insight that
each safe, optimal demonstration induces a set of lower-
cost trajectories that must be unsafe due to violation of
an unknown constraint. Our method samples these unsafe
trajectories, ensuring they are also consistent with the
known constraints (system dynamics, control constraints,
and start/goal constraints), and uses these unsafe trajectories
together with the safe demonstrations as constraints in an
“inverse” integer program which recovers a consistent unsafe
set. Our contributions are fivefold:
• We pose the novel problem of learning a shared

constraint across tasks.

• We propose an algorithm that, given known constraints
and boundedly suboptimal demonstrations of state-
control sequences, extracts unknown constraints
defined in a wide range of constraint spaces (not
limited to the trajectory or state spaces) shared across
demonstrations of different tasks.

• We propose a variant of the aforementioned algorithm
which can scale more gracefully to constraints in high
dimensions by assuming and leveraging parametric
structure in the constraint.

• We provide theoretical analysis on the limits of what
subsets of a constraint can be learned, depending
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on the demonstrations, the system dynamics, and
the trajectory discretization. We also prove that our
method can recover guaranteed inner approximations
of both the unsafe set and the safe set.

• We provide experiments that justify our theory and
show that our algorithm can recover an unsafe set with
few demonstrations, across different types of linear
and nonlinear dynamics, and can be adapted to work
with boundedly suboptimal demonstrations. We also
demonstrate that our method can learn constraints in
high-dimensional state spaces and parameter spaces.

2 Related Work
Inverse optimal control (Kalman (1964); Keshavarz et al.
(2011)) (IOC) and inverse reinforcement learning (IRL)
(Ng and Russell (2000)) aim to recover an objective function
consistent with the received expert demonstrations, in the
sense that the demonstrations (approximately) optimize
the cost function. Our method is complementary to these
approaches; if the demonstration is solving a constrained
optimization problem, we are finding its constraints, given
the objective function; IOC/IRL finds the objective function,
given its constraints. For example, Englert et al. (2017)
attempts to learn the cost function of a constrained
optimization problem from optimal demonstrations by
minimizing the residuals of the KKT conditions, but the
constraints themselves are assumed known. On the other
hand, a risk-sensitive approach to IRL is proposed in Singh
et al. (2018) and is complementary to our work, which aims
to learn hard constraints. Another approach in Amin et al.
(2017) can represent a state-space constraint shared across
tasks as a penalty term in the reward function of an MDP.
However, when viewing a constraint as a penalty, it becomes
unclear if a demonstrated motion was performed to avoid a
penalty or to improve the cost of the trajectory in terms of
the true cost function (or both). Thus, learning a constraint
which generalizes between tasks with different cost functions
becomes difficult. To avoid this issue, we assume a known
cost function to explicitly reason about the constraint.

One branch of safe reinforcement learning aims to
perform exploration while minimizing visitation of unsafe
states. Several methods for safe exploration in the state space
(Schreiter et al. (2015); Turchetta et al. (2016); Akametalu
et al. (2014)) use a Gaussian process (GP) to explore safe
regions in the state space. These approaches differ from ours
in that they use exploration instead of demonstrations. Some
drawbacks to these methods include that unsafe states can
still be visited, Lipschitz continuity of the safety function
is assumed, or the dynamics are unknown but the safe set
is known. Furthermore, states themselves are required to be
explicitly labeled as safe or unsafe, while we only require
that entire trajectories be labeled as safe. Our method is
capable of learning a binary constraint defined in other
spaces, using only state-control trajectories.

There exists prior work in learning geometric constraints
in the workspace. In Armesto et al. (2017), a method is
proposed for learning Pfaffian constraints, recovering a linear
constraint parametrization. In Pérez-D’Arpino and Shah
(2017), a method is proposed to learn geometric constraints
which can be described by the classes of considered

constraint templates. Our method generalizes these methods
by being able to learn a nonlinear constraint defined in any
constraint space (not limited to the state space).

Learning local trajectory-based constraints has also
been explored in the literature. The method in Li and
Berenson (2016) samples feasible poses around waypoints
of a single demonstration; areas where few feasible poses
can be sampled are assumed to be constrained. Similarly,
Mehr et al. (2016) performs online constraint inference in
the feature space from a single trajectory, and then learns a
mapping to the task space. The methods in Pais et al. (2013);
Ye and Alterovitz (2011); Calinon and Billard (2008, 2007)
also learn constraints in a single task. These methods are
inherently local since only one trajectory or task is provided,
unlike our method, which aims to learn a global constraint
shared across tasks.

Our work is also relevant to human-robot interaction.
In Knepper et al. (2017), implicit communication of facts
between agents is modeled as an interplay between demon-
stration and inference, where “surprising” demonstrations
trigger inference of the implied fact. Our method can be
seen as an inference algorithm which infers an unknown
constraint implied by a “surprising” demonstration.

This paper builds upon the constraint learning algorithms
presented in Chou et al. (2018) and Chou et al. (2019).
The algorithm presented in Chou et al. (2018) relies on
a discretization of the state space, yielding a constraint
recovery method which scales exponentially with the
constraint space dimension. The method in Chou et al.
(2019) extends Chou et al. (2018) by modifying the
formulation of the constraint recovery problem, leveraging a
known parameterization of the constraint to enable inference
of safe and unsafe sets in high-dimensional constraint
spaces. Furthermore, several new examples demonstrate
the effectiveness of the new method in high-dimensional
settings. This journal paper presents a unified view of the
methods presented in Chou et al. (2018) and Chou et al.
(2019), with a detailed discussion comparing the benefits
and shortcomings of the two approaches. We also present
a more detailed theoretical analysis of the aforementioned
algorithms and derive tightened theoretical guarantees for
the algorithm in Chou et al. (2018). Additionally, we
compare our approach with inverse reinforcement learning,
demonstrating that learning a constraint as a cost penalty can
lead to unsafe behavior.

3 Preliminaries and Problem Statement
The goal of this work is to recover unknown constraints
shared across a collection of optimization problems,
given boundedly suboptimal solutions, the cost functions,
and knowledge of the dynamics, control constraints, and
start/goal constraints. We discuss the forward problem,
which generates the demonstrations, and the inverse
problem: the core of this work, which recovers the
constraints.

3.1 Forward optimal control problem
Consider an agent described by a state in some state space
x ∈ X . It can take control actions u ∈ U to change its
state. The agent performs tasks Π drawn from a set of
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tasks P , where each task Π can be written as a constrained
optimization problem over state trajectories ξx in state
trajectory space T x and control trajectories ξu in control
trajectory space T u:

Problem 1. Forward problem / “task” Π.

minimize
ξx,ξu

cΠ(ξx, ξu)

s.t. φ(ξx, ξu) ∈ S ⊆ C
φ̄(ξx, ξu) ∈ S̄ ⊆ C̄
φΠ(ξx, ξu) ∈ SΠ ⊆ CΠ

(1)

where cΠ(·) : T x × T u → R is a cost function for
task Π and φ(·, ·) : T x × T u → C is a known feature
function mapping state-control trajectories to some
constraint space C, elements of which are referred to
as “constraint states”. Mappings φ̄(·, ·) : T x × T u → C̄
and φΠ(·, ·) : T x × T u → CΠ are known and map
to potentially different constraint spaces C̄ and CΠ,
containing a known shared safe set S̄ and a known
task-dependent safe set SΠ, respectively. S is an
unknown safe set, and the inverse problem aims to
recover its complement, A .

= Sc∗, the “unsafe” set. In
this paper, we focus on constraints separable in time:
φ(ξx, ξu) ∈ A ⇔ ∃t ∈ {1, . . . , T} φ(ξx(t), ξu(t)) ∈ A,
where we overload φ so it applies to the instantaneous
values of the state and the input. An analogous definition
holds for the continuous time case. Our method can
also learn constraints which are partially or completely
inseparable in time (i.e. φ(ξx, ξu) ∈ A ⇔ ∃{ti, . . . , tj} ∈
{1, . . . , T} φ(ξx(t), ξu(t)) ∈ A,∀t ∈ {ti, . . . , tj})†.

A demonstration, ξxu
.
= (ξx, ξu) ∈ T xu, is a state-control

trajectory which is a boundedly suboptimal solution to
Problem 1, i.e. the demonstration satisfies all constraints
and its cost is at most a factor of δ above the cost of
the optimal solution ξ∗xu, i.e. c(ξ∗x, ξ

∗
u) ≤ c(ξx, ξu) ≤ (1 +

δ)c(ξ∗x, ξ
∗
u). Furthermore, let T be a finite time horizon

which is allowed to vary. If ξxu is a discrete-time trajectory
(ξx = {x1, . . . , xT }, ξu = {u1, . . . , uT }), Problem 1 is a
finite-dimensional optimization problem, while Problem 1
becomes a functional optimization problem if ξxu is a
continuous-time trajectory (ξx : [0, T ]→ X , ξu : [0, T ]→
U). We emphasize that this setup does not restrict the
unknown constraint to be defined on the trajectory space; it
allows for constraints to be defined on any space described
by the range of some known feature function φ.

We assume the trajectories are generated by a dynamical
system ẋ = f(x, u, t) or xt+1 = f(xt, ut, t) with control
constraints ut ∈ U , for all t, and that the dynamics, control
constraints, and start/goal constraints are known. We further
denote the set of state-control trajectories satisfying the
unknown shared constraint, the known shared constraint, and
the known task-dependent constraint as TS , TS̄ , and TSΠ ,
respectively. Lastly, we also denote the set of trajectories
satisfying all known constraints but violating the unknown
constraint as TA.

3.2 Inverse constraint learning problem
The goal of the inverse constraint learning problem is
to recover an unsafe set, A ⊆ C, using Ns provided
safe demonstrations ξ∗sj , j = 1, . . . , Ns, known constraints,
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Figure 1. Discretized constraint space with cells z1, . . . , z10. The
trajectory’s constraint values are assigned to the red cells.

and N¬s inferred unsafe trajectories, ξ¬sk , k = 1, . . . , N¬s,
generated by our method, which can come from multiple
tasks. The safe and unsafe trajectories can together be
thought of as a set of constraints on the possible assignments
of unsafe constraint states in C.

Depending on the amount of structure that we assume we
know about the constraint, there are two approaches. If no
structure about the constraint is known at all, the constraint
space can be gridded and unsafeness can be learned on a grid-
by-grid basis (Section 3.2.1). Otherwise, if the constraint
is known to be described by some parameterization, the
parameters can be learned, which leads to better scalability
(Section 3.2.2).

Inferring unsafe trajectories, i.e. obtaining ξ¬sk , k =
1, . . . , N¬s, is the most difficult part of this problem,
since finding lower-cost trajectories consistent with known
constraints that complete a task is essentially a planning
problem. Much of Section 4 shows how to efficiently obtain
ξ¬sk .

3.2.1 Recovering a gridded constraint To recover a
gridded approximation of the unsafe set A that is consistent
with these trajectories, we first discretize C into a finite set of
G discrete cells Z .

= {z1, . . . , zG} and define an occupancy
function, O(·), which maps each cell to its safeness: O(·) :
Z → {0, 1}, where O(zi) = 1 if zi ∈ A, and 0 otherwise‡.
Continuous space trajectories are gridded by concatenating
the set of grid cells zi that φ(x1), . . . , φ(xT ) lie in. With
slight abuse of notation, we will use zi ∈ φ(ξsi) to denote

∗To be exact, the safe set is assumed to be compact for the forward problem
(Problem 1) to be well-defined, and we aim to learn the closure of the unsafe
setA .

= cl(Sc).
†This can be done by writing the constraints of Problem 2 as sums over
partially separable/inseparable feature components instead of completely
separable components.
‡To avoid complications when states lie on the boundary shared between
two grid cells, grid cells are defined to be disjoint open sets.

Prepared using sagej.cls



4 Journal Title XX(X)

zi ∈ {φ(ξsi(1)), . . . , φ(ξsi(Ti)). The grid discretization is
graphically shown in Figure 1 with a non-uniform grid. Then,
the problem can be written down as an integer feasibility
problem:

Problem 2. Inverse feasibility problem.

find O(z1), . . . ,O(zG) ∈ {0, 1}G
s.t.

∑
zi∈φ(ξ∗sj )

O(zi) = 0, ∀j = 1, . . . , Ns∑
zi∈φ(ξ¬sk )

O(zi) ≥ 1, ∀k = 1, . . . , N¬s

(2)

Further details on Problem 2, including conservativeness
guarantees, incorporating a prior on the constraint, and a
continuous relaxation is presented in Section 4.4.

3.2.2 Recovering a parametric constraint Suppose that
the unsafe set can be described by some parameterization
A(θ)

.
= {k ∈ C | g(k, θ) ≤ 0}, where g(·, ·) is known and

θ are parameters to be learned. Then, a feasibility problem
analogous to Problem 2 can be written to find a feasible θ
consistent with the data:

Problem 3. Parametric constraint recovery problem.

find θ
s.t. g(k, θ) > 0, ∀k ∈ φ(ξ∗si), ∀i = 1, . . . , Ns(

∃k ∈ φ(ξ¬sj ), g(k, θ) ≤ 0
)
, ∀j = 1, . . . , N¬s

Further details on Problem 3, including conservativeness
guarantees and specific mixed-integer programming formu-
lations for common constraint parameterizations are pre-
sented in Section 4.5.

4 Method
The key to our method lies in finding lower-cost trajectories
that do not violate the known constraints, given a
demonstration with boundedly-suboptimal cost satisfying all
constraints. Such trajectories must then violate the unknown
constraint, and we extend existing sampling algorithms to be
more efficient for trajectory-space sampling under various
assumptions on the dynamics. Our goal is to determine an
unsafe set in the constraint space from these trajectories
using either Problem 2 or Problem 3. In the following,
Section 4.1 describes lower-cost trajectories consistent with
the known constraints; Section 4.2 describes how to sample
such trajectories; Section 4.3 describes how to get more
information from unsafe trajectories; Section 4.4 describes
details and extensions to Problem 2; Section 4.5 describes
details and extensions to Problem 3; Section 4.6 discusses
how to extend our method to suboptimal demonstrations. The
complete flow of our method is described in Algorithm 2.

4.1 Trajectories satisfying known constraints
Consider the forward problem (Problem 1). We define the
set of unsafe state-control trajectories induced by an optimal,
safe demonstration ξ∗xu, T ξ

∗
xu

A , as the set of state-control
trajectories of lower cost that obey the known constraints:

T ξ
∗
xu

A
.
= {ξxu ∈ TS̄ ∩ TSΠ

| c(ξx, ξu) < c(ξ∗x, ξ
∗
u)}. (3)

In this paper, we deal with the known constraints from the
system dynamics, the control limits, and task-dependent start
and goal state constraints. Hence, TS̄ = Dξxu ∩ Uξxu , where
Dξxu denotes the set of dynamically feasible trajectories and
Uξxu denotes the set of trajectories using controls in U at
each time-step. TSΠ denotes trajectories satisfying start and
goal constraints. We develop the method for discrete time
trajectories, but analogous definitions hold in continuous
time. For discrete time, length T trajectories, Uξxu , Dξxu ,
and TSΠ

are the following subsets of T xu:

Uξxu
.
= {ξxu | ut ∈ U , ∀t ∈ {1, . . . , T − 1} },

Dξxu
.
= {ξxu | xt+1 = f(xt, ut), ∀t ∈ {1, . . . , T − 1} },

TSΠ

.
= {ξxu | x1 = xs, xT = xg}.

(4)

4.2 Sampling trajectories satisfying known
constraints

We sample from T ξ
∗
xu

A to obtain lower-cost trajectories
obeying the known constraints using hit-and-run sampling
(Kiatsupaibul et al. (2011)), a method guaranteeing
convergence to a uniform distribution of samples over T ξ

∗
xu

A
in the limit; the method is detailed in Algorithm 1 and an
illustration is shown in Figure 2. Hit-and-run starts from an
initial point within the set, chooses a direction uniformly at
random, moves a random amount in that direction such that
the new point remains within the set, and repeats.

Depending on the convexity of the cost function and the
control constraints and on the form of the dynamics, different
sampling techniques can be used, organized in Table 1. The
following sections describe each sampling method.

Algorithm 1: Hit-and-run
Output: out .= {ξ1, . . . , ξN¬s}
Input : T ξ

∗
xu

A , ξ∗xu, N¬s
1 ξxu ← ξ∗xu; out← {};
2 for i = 1:N¬s do
3 r ← sampleRandDirection();

4 L ← T ξ
∗
xu

A ∩ {ξ′xu ∈ T | ξ′xu = ξxu + βr};
5 L−, L+ ← endpoints(L);
6 ξxu ∼ Uniform(L−, L+);
7 out← out ∪ ξxu;
8 end

4.2.1 Ellipsoid hit-and-run When we have a linear system
with quadratic cost and convex control constraints, a very
common setup in the optimal control literature, the set of
lower-cost trajectories satisfying the known constraints

T ξ
∗
xu

A
.
= {ξxu | c(ξxu) < c(ξ∗xu)} ∩ Dξxu

≡ {ξxu | ξ>xuV ξxu < ξ∗
>
xuV ξ

∗
xu} ∩ Dξxu

is an ellipsoid in the trajectory space, which can be efficiently
sampled via a specially-tailored hit-and-run method. Here,
the quadratic cost is written as c(ξxu)

.
= ξ>xuV ξxu, where

V is a matrix of cost parameters, and we omit the control
and task constraints for now. Consider the intersection of
the random line chosen from hit-and-run (r in Algorithm
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Dynamics Cost function Control constraints Sampling method
Linear Quadratic Convex Ellipsoid hit-and-run (Section 4.2.1)
Linear Convex Convex Convex hit-and-run (Section 4.2.2)

Else Non-convex hit-and-run (Section 4.2.3)

Table 1. Sampling methods for different classes of dynamics models, cost functions, and feasible control sets.

ξ0

ξ1

ξ2

ξ3 ξ4

ξ5 ξ6
ξ7

AT ⇠⇤xu

A

Figure 2. Illustration of hit-and-run. Left: Blue lines denote sampled random directions, black dots denote samples. Right: Each point in
T ξ
∗
xu
A corresponds to an unsafe trajectory in the constraint space C, and in this case, C = X .

1) with the lower-cost trajectory set T ξ
∗
xu

A ; denote this
line segment as L and its endpoints as L− and L+

(c.f. Algorithm 1). Furthermore, denote β as a step-size
in direction r; hence, L− and L+ put bounds on the
allowable step-sizes β. Without dynamics, L−, L+ can be
found by solving a quadratic equation L>−V L+ = (ξxu +

β1r)
>V (ξxu + β2r) = ξ∗

>
xuV ξ

∗
xu. We show that this can still

be done with linear dynamics by writing T ξ
∗
xu

A in a special
way. Dξxu can be written as an eigenspace of a singular
“dynamics consistency” matrix, D1, which converts any
arbitrary state-control trajectory to one that satisfies the
dynamics, one time-step at a time. Precisely, if the dynamics
can be written as xt+1 = Axt +But, we can write a matrix
D1:

x1
u1

x2
u2

x̃3
...

uT−1

x̃T


︸ ︷︷ ︸

ξ̂xu

=



I 0 0 0 0 · · · · · · 0
0 I 0 0 0 · · · · · · 0
A B 0 0 0 · · · · · · 0
0 0 0 I 0 · · · · · · 0
0 0 A B 0 · · · · · · 0
...

...
...

...
...

. . .
. . .

...
0 0 0 · · · · · · 0 I 0
0 0 0 · · · · · · A B 0


︸ ︷︷ ︸

D1



x1
u1

x̃2
u2

x̃3
...

uT−1

x̃T


︸ ︷︷ ︸

ξxu

(5)
that fixes the controls and the initial state and performs
a one-step rollout, replacing the second state with the
dynamically correct state. In (5), we denote by x̃t+1 a
state that cannot be reached by applying control ut to state
xt. Multiplying the one-step corrected trajectory ξ̂xu by
D1 again changes x̃3 to the dynamically reachable state
x3. Applying D1 to the original T -time-step infeasible
trajectory T − 1 times results in a dynamically feasible
trajectory, ξfeas

xu = DT−1
1 ξxu. Further, note that the set of

dynamically feasible trajectories is Dξxu
.
= {ξxu | D1ξxu =

ξxu}, which is the span of the eigenvectors of D1 associated
with eigenvalue 1. Thus, obtaining a feasible trajectory via
repeated multiplication is akin to finding the eigenspace via

power iteration (Golub and Van Loan (1996)). One can also
interpret this as propagating through the dynamics with a
fixed control sequence. Now, we can write T ξ

∗
xu

A as another
ellipsoid:

T ξ
∗
xu

A
.
= {ξxu | ξ>xuDT−1>

1 V DT−1
1 ξxu ≤ ξ∗

>
xuV ξ

∗
xu}. (6)

Like for the kinematic case, this ellipsoid can be
efficiently sampled after finding L−, L+ by solving
a quadratic equation (ξxu + β1r)

>DT−1>

1 V DT−1
1 (ξxu +

β2r) = ξ∗
>
xuV ξ

∗
xu.

We deal with control constraints separately, as the
intersection of Uξxu and (6) is in general not an ellipsoid. To
ensure control constraint satisfaction, we reject samples with
controls outside of Uξxu ; this works if Uξxu is not measure
zero. For task constraints, we ensure all sampled rollouts
obey the goal constraints by adding a large penalty term
to the cost function: c̃(·) .

= c(·) + αc‖xg − xT ‖22, where
αc is a large scalar, which can be incorporated into (6)
by modifying V and including xg in ξxu; all trajectories
sampled in this modified set satisfy the goal constraints to
an arbitrarily small tolerance ε, depending on the value of
αc. The start constraint is satisfied trivially: all rollouts start
at xs. Note the demonstration cost remains the same, since
the demonstration satisfies the start and goal constraints; this
modification is made purely to ensure these constraints hold
for sampled trajectories.

4.2.2 Convex hit-and-run For general convex cost func-
tions, the same sampling method holds, but L+, L− cannot
be found by solving a quadratic function. Instead, we solve
c(ξxu + βr) = c(ξ∗xu) via a root finding algorithm or line
search.

4.2.3 Non-convex hit-and-run If T ξ
∗
xu

A is non-convex, L
can now in general be a union of disjoint line segments. In
this scenario, we perform a “backtracking” line search by
setting β to lie in some initial range: β ∈ [β, β]; sampling
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βs within this range and then evaluating the cost function to
see whether or not ξxu + βsr lies within the intersection. If it
does, the sample is kept and hit-and-run proceeds normally;
if not, then the range of possible β values is restricted to
[βs, β] if βs is negative, and [β, βs] otherwise. Then, new βs
are re-sampled until either the interval length shrinks below
a threshold or a feasible sample is found. This altered hit-
and-run technique still converges to a uniform distribution
on the set in the limit, but has a slower mixing time than for
the convex case, where mixing time describes the number of
samples needed until the total variation distance to the steady
state distribution is less than a small threshold (Abbasi-
Yadkori et al. (2017)). Further, we accelerate sampling
spread by relaxing the goal constraint to a larger tolerance
ε̂ > ε but keeping only the trajectories reaching within ε of
the goal.

Algorithm 2: Overall method
Output: O .

= O(z1), . . . ,O(zG) (Problems 2, 4, 5)
θ (Problems 3, 6)

Input : ξs = {ξ∗1 , . . . , ξ∗Ns
}, cΠ(·), known constraints}

1 ξu ← {};
2 for i = 1:Ns do

/* Sample unsafe ξ */
3 if lin., quad., conv. then
4 ξu ← ξu ∩ ellipsoidHNR(ξ∗i );
5 else if lin., conv., conv. then
6 ξu ← ξu ∩ convexHNR(ξ∗i );
7 else
8 ξu ← ξu ∩ nonconvexHNR(ξ∗i );
9 end
/* Constraint recovery */

10 if gridded then
11 O ← Problem X(ξs, ξu);

/* X = 5 if prior, continuous */
/* X = 4 if prior, binary */
/* X = 2 if no prior */

12 else if parameterization then
13 θ ← Problem Y(ξs, ξu);

/* Y = 6 if polytope param. */
/* Y = 3 if general param. */

4.3 Improving learnability using cost function
structure

Naı̈vely, the sampled unsafe trajectories may provide little
information. Consider an unsafe, length-T discrete-time
trajectory ξ, with start and end states in the safe set. This
only says there exists at least one intermediate unsafe state
in the trajectory, but says nothing directly about which state
was unsafe. The weakness of this information can be made
concrete using the notion of a version space. In machine
learning, the version space is the set of consistent hypotheses
given a set of examples (Russell and Norvig (2003)). In our
setting, hypotheses are possible unsafe sets, and examples
are the safe and unsafe trajectories. Knowing ξ is unsafe
only disallows unsafe sets that mark every constraint state
in the constraint space that ξ traverses as safe: (O(z2) =
0) ∧ . . . ∧ (O(zT−1) = 0). If C is gridded into G cells, this
information invalidates at most 2G−T+2 out of 2G possible

unsafe sets. We could do exponentially better if we reduced
the number of cells that ξ implies could be unsafe.

We can achieve this by sampling sub-segments (or sub-
trajectories) of the larger demonstrations, holding other
portions of the demonstration fixed. For example, say we
fix all but one of the points on ξ when sampling unsafe
lower-cost trajectories. Since only one state can be different
from the known safe demonstration, the unsafeness of
the trajectory can be uniquely localized to whatever new
point was sampled: then, this trajectory will reduce the
version space by at most a factor of 2, invalidating at
most 2G − 2G−1 = 2G−1 unsafe sets. One can sample these
sub-trajectories in the full-length trajectory space by fixing
appropriate waypoints during sampling: this ensures the
full trajectory has lower cost and only perturbs desired
waypoints. However, to speed up sampling, sub-trajectories
can be sampled directly in the lower dimensional sub-
trajectory space if the cost function c(·) that is being
optimized is strictly monotone (Morin (1982)): for any
costs c1, c2 ∈ R, control u ∈ U , and state x ∈ X , c1 <
c2 ⇒ h(c1, x, u) < h(c2, x, u), for all x, u, where h(c, x, u)
represents the cost of starting with initial cost c at state x and
taking control u. Strictly monotone cost functions include
separable cost functions with additive or multiplicative stage
costs, which are common in motion planning and optimal
control. If the cost function is strictly monotone, we can
sample lower-cost trajectories from sub-segments of the
optimal path; otherwise it is possible that even if a new sub-
segment with lower cost than the original sub-segment were
sampled, the full trajectory containing the sub-segment could
have a higher cost than the demonstration.

4.4 Gridded integer program formulation
As mentioned in Sections 3.2.1 and 3.2.2, we can solve
various optimization problems after sampling to find an
unsafe set consistent with the safe and unsafe trajectories.
We now discuss the details of this process, starting with the
gridded formulation (Problem 2).

4.4.1 Conservative estimate One can obtain a conser-
vative estimate of the unsafe set A from Problem 2 by
intersecting all possible solutions: if the unsafeness of a
cell is shared across all feasible solutions, that cell must be
occupied. In practice, it may be difficult to directly find all
solutions to the feasibility problem, as in the worst case,
finding the set of all feasible solutions is equivalent to
exhaustive search in the full gridded space (Papadimitriou
and Steiglitz (1982)). A more efficient method is to loop over
allG grid cells z1, . . . , zG and set each one to be safe, and see
if the optimizer can still find a feasible solution. Cells where
there exists no feasible solution are guaranteed unsafe. This
amounts to solving G binary integer feasibility problems,
which can be trivially parallelized. Furthermore, any cells
that are known safe (from demonstrations) do not need to
be checked. We use this method to compute the “learned
guaranteed unsafe cells”, Gz¬s, in Section 6, which we define
as:

Gz¬s = {z ∈ {z1, . . . , zG} | O(z) = 1, ∀O ∈ Fz} (7)

where Fz is the feasible set of Problem 2.
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4.4.2 A prior on the constraint As will be further
discussed in Section 5.1, it may be fundamentally impossible
to recover a unique unsafe set. If we have some prior on the
nature of the unsafe set, such as it being simply connected,
or that certain regions of the constraint space are unlikely
to be unsafe, we can make the constraint learning problem
more well-posed. Assume that this prior knowledge can be
encoded in some “energy” function E(·, . . . , ·) : {0, 1}G →
R mapping the set of binary occupancies to a scalar value,
which indicates the desirability of a particular unsafe set
configuration. Using E as the objective function in Problem
2 results in a binary integer program, which finds an unsafe
set consistent with the safe and unsafe trajectories, and
minimizes the energy:

Problem 4. Inverse binary minimization constraint recovery.

minimize
O(z1),...,O(zG)

∈{0,1}G
E(O(z1), . . . ,O(zG))

s.t.
∑

zi∈φ(ξ∗sj )

O(zi) = 0, ∀j = 1, . . . , Ns∑
zi∈φ(ξ¬sk )

O(zi) ≥ 1, ∀k = 1, . . . , N¬s

(8)

4.4.3 Probabilistic setting and continuous relaxation A
similar problem can be posed in a probabilistic setting, where
grid cell occupancies represent beliefs over unsafeness:
instead of the occupancy of a cell being an indicator variable,
it is instead a random variable Zi, where Zi takes value
1 with probability Õ(Zi) and value 0 with probability 1−
Õ(Zi). Here, the occupancy probability function maps cells
to occupancy probabilities Õ(·) : Z → [0, 1].

Trajectories can now be unsafe with some probability.
We obtain analogous constraints from the integer program
in Section 4.4 in the probabilistic setting. Known safe
trajectories traverse cells that are unsafe with probability
0; we enforce this with the constraint

∑
Zi∈φ(ξ∗sj ) Õ(Zi) =

0: if the unsafeness probabilities are all zero along a
trajectory, then the trajectory must be safe. Trajectories that
are unsafe with probability pk satisfy

∑
Zi∈φ(ξ¬sk ) Õ(Zi) =

E[
∑
Zi∈φ(ξ¬sk ) Zi] = (1− pk) · 0 + pk · Sk ≥ pk where we

denote the number of unsafe grid cells φ(ξ¬sk) traverses
when the trajectory is unsafe as Sk, where Sk ≥ 1.
The following problem directly optimizes over occupancy
probabilities:

Problem 5. Inverse continuous minimization constraint
recovery.

minimize
O(Z1),...,O(ZG)

∈[0,1]G

E(O(Z1), . . . ,O(ZG))

s.t.
∑

zi∈φ(ξ∗sj )

Õ(Zi) = 0, ∀j = 1, . . . , Ns∑
zi∈φ(ξ¬sk )

Õ(Zi) ≥ pk, ∀k = 1, . . . , N¬s

(9)

When pk = 1, for all k (i.e. all unsafe trajectories are
unsafe for sure), this probabilistic formulation coincides
with the continuous relaxation of Problem 4. This justifies
interpreting the solution of the continuous relaxation as

b b b b
k1 ∈ φ(ξs) k2 ∈ φ(ξs)

k3, k4 ∈ φ(ξ¬s)

C
Figure 3. Given an interval parameterization of an unsafe set,
there does not exist any interval which can both explain the data
and label and constraint state left of k1 or right of k2 as unsafe.

occupancy probabilities for each cell. Note that Problem
4 and 5 have no conservativeness guarantees and use
prior assumptions to make the problem more well-posed.
However, we observe that they improve constraint recovery
in our experiments.

4.5 Parameter space integer program
Having discussed extensions to the gridded constraint
recovery problem, we now turn to analogous results for the
parametric case.

4.5.1 Conservative estimate Denote by F the feasible
set of Problem 3. Denote by G¬s and Gs the set of
constraint states which are learned guaranteed unsafe and
safe, respectively; that is, a constraint state k ∈ G¬s or k ∈
Gs if k is classified unsafe or safe for all θ ∈ F :

G¬s .
=
⋂
θ∈F
{k | g(k, θ) ≤ 0} (10)

Gs .
=
⋂
θ∈F
{k | g(k, θ) > 0} (11)

In contrast to Gz¬s, which is the set of guaranteed learned
unsafe grid cells (the analogue of G¬s for grid cells), Gs and
G¬s are defined directly over the constraint space C.

Note that unlike Problem 2, for Problem 3, it is possible
to learn that a constraint state not lying on a demonstration
is guaranteed safe. This is due to the parameterization: given
a particular set of safe and unsafe trajectories, there may not
be any feasible parameter θ ∈ F where k is classified unsafe.
For example, consider the case in Figure 3: given the interval
parameterization g(k, θ = [k̄, k]) = (k̄ − k)(k − k), it is not
possible for any constraint state left of k1 or right of k2 to
be classified unsafe and be consistent with the data. On the
other hand, due to the independence of the grids in Problem
2, learning that a given grid cell is safe or unsafe cannot ever
imply that another grid cell is guaranteed safe.

Similarly to Problem 2, one can check if a constraint
state k ∈ Gs or k ∈ G¬s by adding a constraint g(k, θ) ≤
0 or g(k, θ) > 0 to Problem 3 and checking feasibility of
the resulting program; if the program is infeasible, k ∈ Gs
or k ∈ G¬s. In other words, solving this modified integer
program can be seen as querying an oracle about the safety
of a constraint state k. The oracle can then return that k
is guaranteed safe (program infeasible after forcing k to be
unsafe), guaranteed unsafe (program infeasible after forcing
k to be safe), or unsure (program remains feasible despite
forcing k to be safe or unsafe).

Since Problem 3 works in the continuous constraint space,
it is not possible to exhaustively check if each constraint

Prepared using sagej.cls



8 Journal Title XX(X)

Figure 4. Comparison of the true Gs (left, in green) and the
extracted inner approximation Ĝs (right, in green).

state is guaranteed learned safe or unsafe, unlike the discrete
gridded case in Problem 2. For general parameterizations,
only individual states can be checked for membership
in Gs or G¬s. However, for some particularly common
parameterizations, there are more efficient methods for
recovering subsets of Gs and G¬s:

• Axis-aligned hyper-rectangle parameterization: C ⊆
Rn, θ = [k1, k̄1, . . . , kn, k̄n], g(k, θ) ≤ 0⇔ H(θ) ≤
h(θ), where H(θ)k = [In×n,−In×n]> and h(θ) =
[k̄1, . . . , k̄n, k1, . . . , kn]>. Here, ki and k̄i are the
lower and upper bounds of the hyper-rectangle for
coordinate i.

As the set of axis-aligned hyper-rectangles is closed
under intersection, G¬s is also an axis-aligned hyper-
rectangle, the axis-aligned bounding box of any
two constraint states k1, k2 ∈ G¬s is also contained
in G¬s. This also implies that G¬s can be fully
described by finding the top and bottom corners
[k1, . . . , kn]> and [k̄1, . . . , k̄n]>. Suppose we start
with a known k ∈ G¬s. Then, finding [k1, . . . , kn]>

amounts to performing a binary search for each of
the n dimensions, and the same holds for finding
[k̄1, . . . , k̄n]>.

Recovering Gs is not as straightforward, as the com-
plement of axis-aligned boxes is not closed under
intersection. However, an inner approximation of Gs
can be efficiently obtained as follows: starting at
a constraint state k ∈ G¬s, 2n line searches can
be performed to find the two points of transition
to G¬s in each constraint coordinate. Denote as
Ĝs the complement of the axis-aligned bounding
box of these 2n points; Ĝs is an inner approxi-
mation of Gs, as Gs = (

⋂
θ∈F{x | g(x, θ) ≤ 0})c ⊇

AABB(
⋂
θ∈F{x | g(x, θ) ≤ 0})c, where AABB(·)

denotes the axis-aligned bounding box of a set of
points and the complement acts on the axis-aligned
bounding box.

For example, consider the scenario in Figure 4
where there are only two feasible parameters, θ1

and θ2. Here, Gs is (A(θ1) ∪ A(θ2))c and Ĝs under-
approximates the safe set (Gs is in general not
representable as the complement of an axis-aligned
box).

• Convex parameterization: for fixed θ, {k | g(k, θ) ≤
0} is convex.

While in this case, it is not easy to recover G¬s
exactly, a subset of G¬s can be extracted efficiently by
taking the convex hull of any k1, k2, . . . ∈ G¬s, since
the convex hull is the minimal convex set containing
k1, k2, . . ..

The same approaches apply for recovering Gs when it is
instead the safe set which is an axis-aligned hyper-rectangle
or a convex set.

4.5.2 Choice of parameterization In this section, we
identify classes of parameterizations for which Problem 3
can be efficiently solved:

• g(k, θ) is defined by a Boolean conjunction of linear
inequalities, i.e. A(θ) can be defined as the union and
intersection of half-spaces:

For this case, mixed-integer programming can be
employed. As an example for the particular case
where g(k, θ) ≤ 0 is a single polytope, i.e. g(k, θ)⇔
H(θ)k ≤ h(θ), where H(θ) and h(θ) are affine in θ,
the following mixed integer feasibility problem can be
solved to find a feasible θ:

Problem 6. Polytopic constraint recovery problem.

find θ, {bis}
Ns
i=1, {b

i
¬s}

N¬s
i=1

s.t. H(θ)ki > h(θ)−M(1− bis), bisj ∈ {0, 1}
Nh ,

Nh∑
i=1

bisj ≥ 1,∀ki ∈ φ(ξsj ), i = 1, . . . , Tj , j = 1, . . . , Ns

(12a)

H(θ)ki ≤ h(θ) +M(1− bi¬sk )1Nh
, bi¬sk ∈ {0, 1},

Tj∑
i=1

bi¬sk ≥ 1, ∀ki ∈ φ(ξ¬sk ), ∀k = 1, . . . , N¬s

(12b)

where M is a large positive number and 1Nh
is a

column vector of ones of length Nh. Constraints (12a)
and (12b) use the big-M formulation to enforce that
each safe constraint state lies outside A(θ) and that at
least one constraint state on each unsafe trajectory lies
inside A(θ).

Similar problems can be written down when the safe
or unsafe set can be described by unions of polytopes.

As an alternative to mixed integer programming,
satisfiability modulo theories (SMT) solvers can also
be employed to solve Problem 3 if g(k, θ) is defined
by a Boolean conjunction of linear inequalities.

• g(k, θ) is defined by a Boolean conjunction of convex
inequalities, i.e. A(θ) can be described as the union
and intersection of convex sets:

For this case, satisfiability modulo convex optimiza-
tion (SMC) (Shoukry et al. (2018)) can be employed
to find a feasible θ.

4.5.3 Remarks on parameter space problem We close
this subsection with some remarks on implementation and
extensions to Problem 3.
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• For suboptimal demonstrations or imperfect lower-
cost trajectory sampling, Problem 6 can become infea-
sible. To address this, slack variables can be intro-
duced: replace constraint

∑Tj

i=1 b
i
¬s ≥ sk, sk ∈ {0, 1}

and change the feasibility problem to minimization of∑N¬s
k=1(1− sk).

• In addition to recovering sets of guaranteed learned
unsafe and safe constraint states, a probability
distribution over possibly unsafe constraint states can
be estimated by sampling unsafe sets from the feasible
set of Problem 3.

4.6 Bounded suboptimality of demonstrations
If we are given a δ-suboptimal demonstration ξ̂, where
c(ξ∗) ≤ c(ξ̂) ≤ (1 + δ)c(ξ∗), where ξ∗ is an optimal
demonstration, we can still apply the sampling techniques
discussed in earlier sections, but we must ensure that
sampled unsafe trajectories are truly unsafe: a sampled
trajectory ξ′ of cost c(ξ′) ≥ c(ξ∗) can be potentially safe.
Two options follow: one is to only keep trajectories with cost
less than c(ξ̂)

1+δ , but this can cause little to be learned if δ is
large. Instead, if we assume a distribution on suboptimality,
i.e. given a trajectory of cost c(ξ̂), we know that a trajectory
of cost c(ξ′) ∈ [ c(ξ̂)1+δ , c(ξ̂)] is unsafe with probability pk, we
can then use these values of pk to solve Problem 5.

5 Analysis
In this section, we provide theoretical analysis on our
constraint learning algorithm. In particular, we analyze the
limits of what constraint states can be learned guaranteed
unsafe for both the gridded and parametric cases (Sections
5.1 and 5.3) as well as the conditions under which our
algorithm is guaranteed to learn an inner approximation of
the safe and unsafe sets (Sections 5.2 and 5.4). For ease of
reading, the proofs and some remarks are omitted and can be
found in the appendix.

We begin with an overview of the theoretical results:

• Theorem 1 shows that all states that can be guaranteed
unsafe must lie within some distance to the boundary
of the unsafe set. Corollary 1 shows that the set of
guaranteed unsafe states shrinks to a subset of the
boundary of the unsafe set when using a continuous
demonstration directly to learn the constraint.

• Corollary 2 shows that under assumptions on the
alignment of the grid and unsafe set for the discrete
time case, the guaranteed learned unsafe set is a
guaranteed inner approximation of the true unsafe set.

• For continuous trajectories that are then discretized,
Theorem 3 shows us that the guaranteed unsafe set can
be made to contain states on the interior of the unsafe
set, but at the cost of potentially labeling states within
some distance outside of the unsafe set as unsafe as
well.

• Theorem 4 shows that for the parametric case, all states
that can be guaranteed unsafe must be implied unsafe
by the states within some distance to the boundary of
the unsafe set and the parameterization.

• Theorem 5 shows that for the discrete time case,
the guaranteed safe and guaranteed unsafe sets are
inner approximations of the true safe and unsafe
sets, respectively. For the continuous time case, the
recovered sets are inner approximations of a padded
version of the true sets.

5.1 Learnability
We provide analysis on the learnability of unsafe sets, given
the known constraints and cost function. Most analysis
assumes unsafe sets defined over the state space:A ⊆ X , but
we extend it to the feature space in Corollary 2. We provide
some definitions and state a result bounding Gz¬s∗, the set
of all states that can be learned guaranteed unsafe. We first
define the signed distance:

Definition 1. Signed distance. Signed distance from point
p ∈ Rm to set S ⊆ Rm, sd(p,S) = − infy∈∂S ‖p− y‖ if
p ∈ S; infy∈∂S ‖p− y‖ if p ∈ Sc.
Theorem 1. Learnability (discrete time). For trajectories
generated by a discrete time dynamical system satisfying
‖xt+1 − xt‖ ≤ ∆x for all t, the set of learnable guaranteed
unsafe states is a subset of the outermost ∆x shell of the
unsafe set: Gz¬s∗ ⊆ {x ∈ A | −∆x ≤ sd(x,A) ≤ 0} (see
Section A.1, Figure A.1 for an illustration).

Corollary 1. Learnability (continuous time). For continu-
ous trajectories ξ(·) : [0, T ]→ X , the set of learnable guar-
anteed unsafe states shrinks to the boundary of the unsafe
set: Gz¬s∗ ⊆ {x ∈ A | sd(x,A) = 0}.

Depending on the cost function, Gz¬s∗ can become
arbitrarily small: some cost functions are not very
informative for recovering a constraint. For example, the path
length cost function used in many of the experiments (which
was chosen due to its common use in the motion planning
community), prevents any lower-cost sub-trajectories from
being sampled from straight sub-trajectories. The overall
control authority that we have on the system also impacts
learnability: the more controllable the system, the more of
the ∆x shell is reachable. In particular, a necessary condition
for any unsafe states to be learnable from a demonstration
of length T + 1 starting from x0 and ending at xT is for
there to be more than one trajectory which steers from x0 to
xT in T + 1 steps while satisfying the dynamics and control
constraints.

5.2 Conservativeness
We discuss conditions on A and discretization which ensure
our method provides a conservative estimate of A. For
analysis, we assumeA has a Lipschitz boundary (Dacorogna
(2015)). We begin with notation (an explanatory illustration
is in Section A.2, Figure A.2):

Definition 2. Normal vectors. Denote the outward-pointing
normal vector at a point p ∈ ∂A as n̂(p). Furthermore, at
non-differentiable points on ∂A, n̂(p) is replaced by the
set of normal vectors for the sub-gradient of the Lipschitz
function describing ∂A at that point (Allaire et al. (2016)).

Definition 3. γ-offset padding. Define the γ-offset padding
∂Aγ as: ∂Aγ = {x ∈ X | x = y + dn̂(y), d ∈ [0, γ], y ∈
∂A}.
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Definition 4. γ-padded set. We define the γ-padded set of
the unsafe set A, A(γ), as the union of the γ-offset padding
and A: A(γ)

.
= ∂Aγ ∪ A.

Definition 5. Maximum grid size. Let R(zi) be the radius
of the smallest ball which contains grid cell zi: R(zi) =
minr minxi r, subject to zi ⊆ Br(xi), for some optimal
center xi.

Furthermore, let R∗ be the radius of the smallest
ball which contains each grid cell zi, i = 1, . . . , G: R∗ =
max(R(z1), . . . , R(zG)).

We also introduce the following assumption, which is
illustrated in Figure A.3 for clarity:
Assumption 1: The unsafe set A is aligned with the grid
(i.e. there does not exist a grid cell z containing both safe
and unsafe states in its interior).

Theorem 2. Discrete time conservative recovery of unsafe
set. For a discrete-time system, if Assumption 1 holds,
Gz¬s ⊆ A. If Assumption 1 does not hold, then Gz¬s ⊆ A(R∗).

If we use continuous trajectories directly, the guaranteed
learnable set Gz¬s∗ shrinks to a subset of the boundary of the
unsafe set, ∂A (c.f. Corollary 1). However, if we discretize
these trajectories, we show that we can learn unsafe states
lying in the interior, at the cost of conservativeness holding
only for a padded unsafe set. We then show that a similar
result holds when discretizing a continuous trajectory in
a feature space. For the following results, we make an
additional assumption, which is illustrated in Figure A.4 for
clarity:
Assumption 2: The time discretization of the unsafe
trajectory ξ : [0, T ]→ X , {t1, . . . , tN}, ti ∈ [0, T ], for all i,
is chosen such that there exists at least one discretization
point in the interior of each cell that the continuous trajectory
passes through (i.e. if ∃t ∈ [0, T ] such that ξ(t) ∈ z, then
∃ti ∈ {t1, . . . , tN} such that ξ(ti) ∈ z.

Theorem 3. Continuous-to-discrete time conservativeness.
The following results hold for continuous time systems:

1. Suppose that both Assumptions 1 and 2 hold. Then, the
learned guaranteed unsafe set Gz¬s, defined in Section
4.4.1, is contained within the true unsafe set A.

2. Suppose that only Assumption 2 holds. Then, the
learned guaranteed unsafe set Gz¬s is contained within
the R∗-padded unsafe set, A(R∗).

3. Suppose that neither Assumption 1 nor Assump-
tion 2 holds. Furthermore, suppose that Problems
2, 4, and 5 are using M sub-trajectories sam-
pled with Algorithm 1 as unsafe trajectories, and
that each sub-trajectory is defined over the time
interval [ai, bi], i = 1, . . . ,M . Denote Dξ([a, b])

.
=

supt1∈[a,b],t2∈[t1,b] ‖ξ(t1)− ξ(t2)‖2, for some tra-
jectory ξ. Denote D∗ .= maxi∈{1,...,M}D∗ξi([ai, bi]).
Then, the learned guaranteed unsafe set Gz¬s is
contained within the D∗ +R∗-padded unsafe set,
A(D∗ +R∗).

Corollary 2. Continuous-to-discrete feature space conserva-
tiveness. Let the feature mapping φ(x) from the state space
to the constraint space be Lipschitz continuous with Lipschitz
constant L. Then, the following results hold:

1. Suppose both Assumptions 1 and 2 (used in Theorem
3) hold. Then, our method ensures Gz¬s ⊆ A.

2. Suppose only Assumption 2 holds. Then, our method
recovers a guaranteed subset of the LR∗-padded
unsafe set, A(LR∗), in the feature space.

3. Suppose neither Assumption 1 nor Assumption 2 holds.
Then, our method recovers a guaranteed subset of
the L(D∗ +R∗)-padded unsafe set,A(L(D∗ +R∗)),
where D∗ is as defined in Theorem 3.

5.3 Parametric learnability
In this section, we develop results for learnability of the
unsafe set in the parametric case. For clarity, we prove the
results for C = X . We begin with the following notation:

Definition 6. Implied unsafe set. For some set B ⊆ Θ,
denote

I(B)
.
=
⋂
θ∈B
{x | g(x, θ) ≤ 0} (13)

as the set of states that are implied unsafe by restricting the
parameter set to B. In words, I(B) is the set of states for
which all θ ∈ B mark as unsafe.

The following result states that in discrete time, the
learnable set of unsafe states G∗¬s is contained by the set of
states which must be implied unsafe by learning that all states
in the outer ∆x shell of the unsafe set, A∆x, are unsafe.
Furthermore, in continuous time, the same holds, except the
∆x shell is replaced by the boundary of the unsafe set, ∂A.

Theorem 4. Discrete time learnability for parametric
constraints. For trajectories generated by discrete time
systems, G¬s ⊆ G∗¬s ⊆ I(F∆x), where

F∆x = {θ | ∀i ∈ {1, . . . , Ns},∀x ∈ ξ∗i , g(x, θ) > 0,

∀x ∈ A∆x, g(x, θ) ≤ 0}

Corollary 3. Continuous-time learnability for parametric
constraints. For trajectories generated by continuous time
systems, G¬s ⊆ G∗¬s ⊆ I(F∂A), where

F∂A = {θ | ∀x ∈ ξ∗i ,∀i ∈ {1, . . . , Ns}, g(x, θ) > 0,

∀x ∈ ∂A, g(x, θ) ≤ 0}

5.4 Parametric conservativeness
We write conditions for conservative recovery of the unsafe
set and safe set when solving Problems 3 and 6 for discrete
time and continuous time systems.

Theorem 5. Conservative recovery for discrete time systems
with parametric constraints. For a discrete-time system, if
M in Problem 6 is chosen to be greater than max(M1,M2),
where M1 = maxxi∈ξs maxθ maxj(H(θ)xi − h(θ))j and
M2 = maxxi∈ξ¬s maxθ maxj(H(θ)xi − h(θ))j , G¬s ⊆ A
and Gs ⊆ S.

Corollary 4. Conservative recovery for continuous time
systems with parametric constraints. For a continuous-
time system, where demonstrations are time-discretized as
previously discussed, ifM is chosen as in Theorem 5, Gs ⊆ S
and G¬s ⊆ A(D∗), where D∗ is as defined in Theorem 3.
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Fig. 8, Row 1 Fig. 8, Row 2 Fig. 8, Row 3 Fig. 9 Fig. 10 Fig. 11 Fig. 13 Fig. 15 Fig. 18
Space discretization 0.1 0.25 0.5 1 1 n/a n/a n/a n/a

Number of trajectories sampled 300000 150000 10000 10000 10000 100000 250000 250000 10000
Number of trajectories used 300000 150000 10000 10000 10000 125 15000 1500 500

ε n/a n/a 10−3 10−3 10−3 n/a n/a n/a 10−3

ε̂ n/a n/a 10−2 10−2 10−2 n/a n/a n/a 10−2

αc 1010 104 1 1 1 1010 1010 1010 1
Minimum L length n/a n/a 10−10 10−10 10−10 n/a n/a n/a 10−10

D∗ n/a n/a 7.85 10.5 0.04 n/a n/a n/a n/a
R∗ 0.07 0.35 0.35 0.70 0.005 n/a n/a n/a n/a

Table 2. Parameters used for each experiment.

Experiment Time (sampling
trajectories)

Time (constraint
recovery)

Single integrator,
U-shape, gridded; Fig. 8,

Row 1

11.5 min 3 min

Double integrator,
gridded; Fig. 8, Row 2

4.5 min 4.5 min

Dubins’ car, gridded; Fig.
8, Row 3

2 hrs 4 min

Dubins’ car, suboptimal,
gridded; Fig. 9

1 hr 2 min

Dubins’ car, feature space,
gridded; Fig. 10

30 min 4 min

Single integrator,
U-shape, parametric; Fig.

11

1.5 min 27.3 seconds

7-DOF arm; Fig. 11 12.5 min 1.2 seconds
7-DOF arm, suboptimal;

Fig. 11
9 min 1.2 seconds

Quadrotor; Fig 18 8.5 min 11.9 seconds
Table 3. Approximate runtimes for each experiment.

6 Evaluations: Gridded formulation
In this section and the next (Section 7), we evaluate the
effectiveness of both our gridded and parametric variants of
the constraint recovery problem on a variety of examples.
Experiment parameters and approximate runtimes for all
examples can be found in Tables 2 and 3. All experiments
were conducted on a 4-core 2017 Macbook Pro with a
3.1 GHz Core i7 processor. All code was implemented in
MATLAB.

We evaluate the gridded variant of our method on a
variety of constraint recovery problems in this section. In
particular, we provide examples showing the effectiveness of
using unsafe trajectories to reduce the ill-posedness of the
constraint-recovery problem (Section 6.1), that our method
has advantages over inverse reinforcement learning (Section
6.2), that our method can be applied for discrete-time,
continuous-time, linear, and nonlinear system dynamics
(Section 6.3), that our method can be adapted to work
with suboptimal demonstrations (Section 6.4), and that our
method can also learn constraints in arbitrary feature spaces
(Section 6.5).

6.1 Version space example
Consider a simple 5× 5 8-connected grid world in which
the tasks are to go from a start to a goal, minimizing
Euclidean path length while staying out of the unsafe “U-
shape”, the outline of which is drawn in black (Fig. 5). Four
demonstrations are provided, shown in Fig. 5 on the far left.
Initially, the version space contains 225 possible unsafe sets.

1 2 3 4
Safe 262144 4096 1024 256

Safe & unsafe 11648 48 12 3
Table 4. Number of consistent unsafe sets, varying the number
of demonstrations, using/not using unsafe trajectories (c.f. the
example in Section 6.1).

Each safe trajectory of length T reduces the version space
at most by a factor of 2T , invalidating at most 225 − 225−T

possible unsafe sets. Unsafe trajectories are computed by
enumerating the set of trajectories going from the start to the
goal at lower cost than the demonstration. The numbers of
unsafe sets consistent with the safe and unsafe trajectories
for varying numbers of safe trajectories are given in Table 4.

Ultimately, it is impossible to distinguish between the
three unsafe sets on the right in Fig. 5. This is because there
exists no task where a trajectory with cost lower than the
demonstration can be sampled which only goes through one
of the two uncertain states. Further, though the uncertain
states are in the ∆x shell of the constraint, due to the
limitations of the cost function, we can only learn a subset
of that shell (c.f. Theorem 1).

There are two main takeaways from this experiment. First,
by generating unsafe trajectories, we can reduce the uncer-
tainty arising from the ill-posedness of constraint learning:
after 4 demonstrations, using unsafe demonstrations enables
us to reduce the number of possible constraints by nearly a
factor of 100, from 256 to 3. Second, due to limitations in
the cost function, it may be impossible to recover a unique
unsafe set, but the version space can be reduced substantially
by sampling unsafe trajectories.

6.2 Comparison with inverse reinforcement
learning

In this section, we illustrate some advantages of explicitly
learning a hard constraint from demonstrations over learning
a softened penalty through two examples.

6.2.1 Gridded example Consider the grid world in Figure
6(a), where the available actions at each state are to move up,
down, left, right (except when doing so goes out of bounds),
and an “exit” action, which takes the agent to a terminal
state. In this setting, the objective of the demonstrator is to
minimize the path length to the goal (green square) while
avoiding the unsafe set (red squares), and we are given one
demonstration doing so (see Figure 6(a)).

Suppose that as the learner, we know the objective
is path length (see Figure 6(b)) and we also know the
goal (see Figure 6(c)), and we would like to learn the
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Figure 5. Leftmost: Demonstrations and unsafe set. Rest: Set of possible constraints. Postulated unsafe cells are plotted in red, safe
states in blue.

unknown red constraint by representing it as an unknown
penalty component in the reward function and learning it
via inverse reinforcement learning (Ng and Russell (2000)).
We can write this problem in the framework of IRL by
representing the grid world as a deterministic, finite horizon
Markov decision process 〈S,A, P,R, T 〉, where the state
space S, action space A, and transition probabilities P are
as described in the previous paragraph, and T is the time
horizon (T = 11 for this problem). The reward function
R(s, a) is assumed to have a known componentRgoal(s, a) +
Rpath(s, a) and unknown component Runsafe(s, a), which is
to be learned from the demonstrations. Specifically, the
path length aspect of the cost function is modeled by a
small negative reward upon reaching each state (see Figure
6(b)), Rgoal(s, a) is zero except for a large positive reward
obtained by taking the exit action at the goal state (see
Figure 6(c)), and we take the reward function to be of
the form R(s, a) = Rgoal(s, a) +Rpath(s, a) +Runsafe(s, a).
One penalty function Runsafe(s, a) which is consistent
with the demonstration and the known reward function
component is shown in Figure 6(d) (here, the numerical
labels on each state correspond to the reward obtained when
taking an action that reaches that state). This is because by
using this penalty, there exists no trajectory that achieves a
larger cumulative reward than the demonstration, under the
combined reward function (Figure 6(e)).

However, using this learned penalty when starting from
the bottom right state leads to an optimal path which is
unsafe (Figure 6(f)), as the learned penalty is only consistent
with the observed demonstrations but does not necessarily
adequately enforce the constraint starting from novel initial
states. On the other hand, using our method, by sampling
lower-cost trajectories, we can learn that each state on
the middle row except for the leftmost state is guaranteed
unsafe. Using this learned constraint and planning a path
starting from the bottom right state leads to a path which
avoids the unsafe set. Similarly, the learned penalty will not
necessarily be valid when changing the known component of
the reward function (i.e. the goal state) because the learned
penalty values will depend on the values of the known
component, while the learned constraint is agnostic to the
known component and will transfer across different known
reward functions, and unsafe paths can be planned using the
learned penalty (Figure 6(f)-(g)).

Overall, the key takeaways of this example are to show
that representing a constraint as a reward penalty may lead
to unsafe behavior when planning trajectories from new start

states or to new goal states, while explicitly learning the
constraint transfers more reliably across tasks.

6.2.2 Parametric example Consider the problem illus-
trated in Figure 7, where the demonstrator’s objective is
to minimize path length while avoiding the red obstacle
and satisfying input constraints: that is, the demonstrator
solves Problem 1, where the obstacle avoidance constraint
is encoded in the unsafe set A = {x | [I2×2,−I2×2]>x ≤
θ}, where θ = [2, 2, 2, 2]> and the path length objective is
encoded in cΠ(ξx, ξu) =

∑T−1
t=1 ‖xt+1 − xt‖22. We consider

two variants of the inverse optimization problem: in the
first variation, we solve Problem 6 to directly recover the
parameters θ defining the unknown constraint. In the second
variation, we modify Problem 1 to soften the obstacle avoid-
ance constraint to a cost penalty, posing the problem as:

minimize
ξx,ξu

T−1∑
t=1

‖xt+1 − xt‖22 + λ

T∑
t=1

1xt /∈S

s.t. φ̄(ξx, ξu) ∈ S̄ ⊆ C̄
φΠ(ξx, ξu) ∈ SΠ ⊆ CΠ

(14)

where the constraints encode the input and start/goal
constraints, 1(·) denotes the indicator function for the
event (·), and λ is a nonnegative penalty coefficient.
In this variation of the learning problem, we assume
that S is known, and we only aim to learn a suitable
penalty coefficient λ which makes the demonstrations
globally-optimal. At this point, we should also note that
it can be challenging to determine a suitable cost penalty
parameterization; for example, while λ

∑T
t=1 ‖xt‖∞ may

appear to be a good penalty parameterization, we could not
find a value of λ for this parameterization that replicated the
demonstrated behavior presented in Figure 7.

By solving Problem 6 using the two provided demonstra-
tions and sampled lower-cost trajectories, θ can be learned
exactly, and the guaranteed safe/unsafe sets match with
the true safe/unsafe sets (G¬s = A and Gs = S). On the
other hand, choosing λ = 0.15 in (14) is a sufficiently
large penalty to make the solution of (14) match with the
demonstrations. However, like the example in Figure 6,
planning new trajectories from different start or goal states
can lead to unsafe trajectories under the learned cost function
(see Figure 7, right). Furthermore, the notion of guaranteed
unsafeness of a state is not meaningful for the softened case,
as states that are avoided (“unsafe”) for one pair of start/goal
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Figure 6. IRL comparison (gridded). (a) Demonstration. (b) Path
length component of reward function rpath(x) (numbers indicate
the reward obtained upon reaching a state). (c) Goal component of
reward function rgoal(x). (d) A consistent softened constraint
reward function. (e) Combined reward function. (f) Unsafe optimal
trajectory from a new initial condition under the combined reward
function. (g) Combined reward function for a different goal. (h)
Unsafe optimal trajectory when planning with a different goal.
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Figure 7. IRL comparison (parametric). Left: We are given two
demonstrations avoiding a red obstacle. Right: Paths planned with
the cost penalty may be unsafe, whereas trajectories planned with
the learned constraint remain safe.

states may be visited (“safe”) for a different pair, provided it
is less costly to receive a penalty for violating the constraint
compared to planning a higher-cost trajectory that satisfies
the constraint.

6.3 Dynamics and discretization
Experiments in Fig. 8 show that our method can be
applied to several types of system dynamics, can learn
non-convex/multiple unsafe sets, and can use continuous
trajectories. All unsafe sets A are open sets. We solve
Problems 4 and 5, with an energy function promoting
smoothness by penalizing squared deviations of the
occupancy of a grid cell zi from its 4-connected
neighbors N(zi):

∑G
i=1

∑
zj∈N(zi)

‖O(zi)−O(zj)‖22. In
all experiments, the mean squared error (MSE) is computed

as 1
G

√∑G
i=1 ‖O(zi)∗ −O(zi)‖22, where O(zi)

∗ is the
ground truth occupancy. The demonstrations are color-
matched with their corresponding number on the x-axis of
the MSE plots. For experiments with more demonstrations,
only those causing a notable change in the MSE were color-
coded. The learned guaranteed unsafe states Gz¬s are colored
red on the left column.

First, we recover a non-convex “U-shaped” unsafe
set in the state space using trivial 2D single-integrator
dynamics: x = [χ, y]>, xt+1 = xt + ut, with control con-
straints ‖ut‖ ≤ 0.5, for all t. The demonstrator minimizes
c(ξx, ξu) =

∑T−1
t=1 ‖ut‖22. The results are shown in row 1

of Fig. 8. The solutions to both Problems 5 and 4 return
reasonable results, and the solution of Problem 4 achieves
zero error.

The second row shows learning two polyhedral unsafe
sets in the state space with 4D double integrator
linear dynamics: x = [χ, χ̇, y, ẏ]>, where xt+1 = Axt +

But, where A = exp

(
diag

([
0 1
0 0

]
,

[
0 1
0 0

]))
, B =∫ 1

0

exp(Aτ)dτ
[
0 1 0 1

]>
, with control constraints

|ut| ≤ [20, 10]>, for all t. The demonstrator minimizes
c(ξx, ξu) =

∑T−1
t=1 ‖xt+1 − xt‖22. The learning procedure

yields similar results. We note the linear interpolation of
some demonstrations in row 1 and 2 enter A; this is because
both sets of dynamics are in discrete time and only the
discrete waypoints must stay out of A.
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Figure 8. Results for various dynamical systems and time discretization. Rows (top-to-bottom): Single integrator; double integrator;
Dubins’ car (CT). Columns (left-to-right): Demonstrations are plotted together with the outline of the true unsafe set A, and the learned
guaranteed unsafe set Gz¬s is overlaid (the red cells); mean squared error between the output of Problem 4 or Problem 5 and the ground
truth; Problem 5 solution, using all demonstrations; Problem 4 solution, using all demonstrations.

The third row shows learning a polyhedral unsafe
set in the state space, with time-discretized continuous,
nonlinear Dubins’ car dynamics, which has a 3D state x .

=[
χ y θ

]>
and dynamics ẋ = [cos(θ), sin(θ), u]> with

control constraints |u| ≤ 1. The demonstrator minimizes
c(ξx, ξu) =

∑
u τui , where τui is the total time duration of

applied control input (i.e. the time it took to go from start
to goal). These dynamics are more constrained than the
previous cases, so sampling lower cost trajectories becomes
more difficult, but despite this we can still achieve near zero
error solving Problem 4. Some over-approximation results
from some sampled unsafe trajectories entering regions not
covered by the safe trajectories, i.e. there are red guaranteed
learned unsafe cells outside the true unsafe set. For example,
in the right column, the two red blocks to the top left of
A are generated by lower-cost trajectories that trade off the
increased cost of entering these grid cells by entering A.
This phenomenon is consistent with Theorem 3; we recover
a set that is contained within a D∗ +R∗-padding ofA (here,
D∗ +R∗ = 8.2). Learning curve spikes occur when over-
approximation occurs.

Overall, we note that for the gridded case, Gz¬s tends to be
a significant underapproximation ofA due to the chosen cost
function and limited demonstrations. For example, in row
1 of Fig. 8, Gz¬s cannot contain the portion of A near long
straight edges, since there exists no shorter path going from
any start to any goal with only one state within that region.
For row 3 of Fig. 8, we learn less of the bottom part ofA due
to most demonstrations’ start and goal locations making it

harder to sample feasible control trajectories going through
that region; with more demonstrations, this issue becomes
less pronounced. In Section 7.1, we discuss how using a
constraint parameterization can reduce the gap between Gz¬s
and A.

6.4 Suboptimal human demonstrations
We demonstrate our method on suboptimal demonstrations
collected via a driving simulator, using a car model with
CT Dubins’ car dynamics identical to those described in
Section 6.3. Human steering commands were recorded as
demonstrations, where the task was to navigate around the
orange box and drive between the trees (Fig. 9). For a
demonstration of cost c, trajectories with cost less than
0.9c were believed unsafe with probability 1. Trajectories
with cost c′ in the interval [0.9c, c] were believed unsafe
with probability 1− ((c′ − 0.9c)/0.1c). MSE for Problem
5 is shown in Fig. 9 (Problem 4 is not solved since the
probabilistic interpretation is needed). For this problem, D∗

is 10 seconds and the unsafe set is grid-aligned; hence,
despite suboptimality, the learned guaranteed unsafe set is
a subset of A(D∗). While the MSE is highest here of
all experiments, this is expected, as trajectories may be
incorrectly labeled safe/unsafe with some probability.

6.5 Feature space constraint
We demonstrate that our framework is not limited to the state
space by learning a constraint in a feature space. Consider
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Figure 9. Suboptimal demonstrations: left: setup, center: demonstrations, A, Gz¬s, center-right: MSE, right: solution to Problem 5.
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Figure 10. Feature space constraint recovery. Unsafe set in the
constraint space A is plotted in orange. The single demonstration
is overlaid (red: start, green: goal). Terrain isocontours
L(x) = const are overlaid.

the scenario of planning a safe path for a mobile robot
with identical continuous Dubins’ car dynamics through
hilly terrain, where the magnitude of the terrain’s slope is
given as a feature map (i.e. φ(x) = ‖∂L(x̂)/∂x̂‖2, where
x̂ = [χ y]> and L(x̂) is the elevation map). The robot will
slip if the magnitude of the terrain slope is too large, so
we generate a demonstration which obeys the ground truth
constraint φ(x) < 0.05; hence, the ground truth unsafe set
is A .

= {x | φ(x) ≥ 0.05}. From one safe trajectory (Fig.
10) generated by RRT* (Karaman and Frazzoli (2010)) and
gridding the feature space as {0, 0.005, . . . , 0.145, 0.15}, we
recover the constraint φ(x) < 0.05 exactly.

This example shows how using using a feature
parameterization can benefit the sample complexity of our
method; in the next section, we show that by using a
parameterization, the constraint space gridding used so far
can be eliminated to improve our method’s scalability.

7 Evaluations: Parametric
We evaluate the parametric variant of our method on a
variety of constraint recovery problems in this section.
In particular, we provide examples showing the effect of
using a constraint parameterization on sample complexity
and guaranteed learnability (Section 7.1), that our method
can be applied to learn a high-dimensional pose constraint
(Sections 7.2.1 and 7.2.2), and that our method can work
with trajectories generated by high-dimensional dynamics
(Section 7.3).

7.1 Comparison to gridded formulation
To demonstrate the advantages provided by assuming a
parameterization, we replicate the experiment in the first
row of Figure 8, assuming that A can be represented as the
union of three axis-aligned boxes. The results are displayed
in Figure 11. Here, the same grid points are queried for
guaranteed safeness or unsafeness as described in Section
4.5.
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Figure 11. Replicating row 1 of Figure 8 using a three-box
parameterization. Left: G¬s is shaded in red and Gs is shaded in
green. Demonstrations are overlaid and color-coded to match with
row 1 of Figure 8. Right: Recovered constraint using a variant of
Problem 6.

Compared to the gridded approach, the true unsafe set
can be exactly recovered with just six of the original eleven
demonstrations (demonstrations 1-5 and 8 in row 1 of Figure
8). This improved sample complexity arises from the fact
that our method can extrapolate that some unseen states are
safe or unsafe using the parameterization. On the contrary,
in the gridded formulation, each grid cell is independent and
learning that some cell is unsafe can never imply that another
cell is unsafe; only learning that a cell is safe can imply that
another cell is unsafe.

Note that compared to Figure 8, a non-trivial Gs containing
states not explicitly covered by demonstrations can now
be recovered. Furthermore, G¬s covers a larger fraction of
the true unsafe set than compared to the gridded approach.
As just discussed, this arises from the fact that given the
parameterization and some guaranteed unsafe states, other
states can be implied unsafe. As a result, G¬s expands
to include the set of states which must be unsafe to be
compatible with the safe and unsafe trajectories and the
parameterization as well.

7.2 6D pose constraint for a 7-DOF robot arm
7.2.1 Optimal demonstrations In this example, we learn
a six-dimensional hyper-rectangular pose constraint for the
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end effector of a 7-DOF Kuka iiwa arm. One example of
such a setting is when the robot is asked to pick up a cup and
bring it to a human, all while ensuring the cup’s contents
do not spill (angle constraint) and proxemics constraints
(i.e. the end effector never gets too close to the human) are
satisfied (position constraint). To this end, the end effector
orientation (parametrized in Euler angles) is constrained
to satisfy (α, β, γ) ∈ [α, ᾱ]× [β, β̄]× [γ, γ̄] = [−π, π]×
[− π

60 ,
π
60 ]× [− π

60 ,
π
60 ], while the end effector position is

constrained to lie in (x, y, z) ∈ [x, x̄]× [y, ȳ]× [z, z̄] =
[−0.51, 0.51]× [−0.3, 1.1]× [−0.51, 0.51] (these sets are
displayed in Figure 12). Seven demonstrations (see Figure
12) optimizing c(ξx, ξu) =

∑T−1
i=1 ‖xi+1 − xi‖22, where x =

[θ1, θ2, θ3, θ4, θ5, θ6, θ7]>, are generated by solving the
nonlinear trajectory optimization problem using IPOPT
(Wächter and Biegler (2006)) for the kinematic, discrete-
time model in 7D joint space:

θit+1 = θit + uit, i = 1, . . . , 7 (15)

Furthermore, for each demonstration T = 6 and control con-
straints ut ∈ [−2, 2]7, for all t. Note that the demonstrations
push up against the position constraint, since the trajectory
minimizing joint-space path length without the position
constraint is an arc that exceeds the bounds of the position
constraint; the position constraint ends up increasing the cost
by truncating that arc.

The constraint is recovered with Problem
6, where H(θ) = [I,−I]> and h(θ) = θ =
[x̄, ȳ, z̄, ᾱ, β̄, γ̄, x, y, z, α, β, γ]>. The initial search space
for the parameters θ is constrained to [−1.5, 1.5]×
[−1.5, 1.5]× [−1.5, 1.5]× [−π, π]× [−π, π]× [−π, π].
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Figure 12. 7-DOF arm setup for optimal demonstrations. Left:
End effector position constraint (gray box). Right: Euler angle
constraint (gray box). The position and angular component of the
demonstrations are overlaid and color-coded to match with each
other and with the volume statistics in Figure 13.

Figure 13 shows that as the number of demonstrations
increases, Gs approaches the true safe set S and G¬s
approaches the true unsafe set A, respectively. Specifically,
in the bottom left plot of Figure 13, as Gs ⊆ S, Vol(Gs)→
Vol(S) implies convergence to the true safe set. Similarly,
in the top left plot of Figure 13, as Ĝc¬s ⊇ Ac = S, IoU .

=
Vol(Ac)

Vol(Ĝc
¬s)
→ 1 implies convergence to the true unsafe set.

For the unsafe sets, the volumes are computed for the
complement of the unsafe sets for 1) ease of visualization and
2) compared to the unsafe sets, due to the relative sizes of the
sets, the change in volume error of the complement is more
pronounced as the number of demonstrations increases. The
center columns of Figure 13 display a comparison between
the safe set and the complement of an inner approximation

of the unsafe set, showing that the two match nearly exactly,
and the gap in the β direction can be likely reduced with
more demonstrations. The right column of Figure 13 displays
projections of the recovered safe sets, which match exactly
with the true safe sets displayed in Figure 12.

7.2.2 Suboptimal demonstrations Suboptimal demon-
strations are recorded using a virtual reality environment,
where the demonstrator moves a model of the 7-DOF Kuka
iiwa arm from desired start to goal end effector configura-
tions using an HTC Vive (see Figure 16). A visualization of
the virtual environment and the test equipment is found in
Figure 16. The continuous trajectories are discretized down
to T = 10 time-steps for lower-cost trajectory sampling.
Like for the optimal case, the demonstrator is asked to
optimize c(ξx, ξu) =

∑T−1
i=1 ‖xi+1 − xi‖22, for a total of five

demonstrations (see Figure 14).
Again, the constraint is recovered with Problem 6, where

H(θ), h(θ), and the initial search space for θ are as defined
for the optimal case. As described in Section 4.5, slack
variables are added to ensure feasibility of the problem.
Similarly to the example in Section 6.4, for a suboptimal
demonstration of cost ĉ, we only use trajectories of cost less
than 0.9ĉ as unsafe trajectories.

Figure 15 shows that as the number of demonstrations
increases, Gs approaches the true safe set S and G¬s
approaches the true unsafe set A, respectively. However, for
the suboptimal case, overapproximation of the unsafe set can
occur both due to the time discretization from continuous
time to discrete time as well not knowing an exact bound on
the demonstration suboptimality. The intersection over union
(IoU) metric is used to measure how well the complement
of the true unsafe set, Gs, matches with the complement of
the inner approximation of the learned guaranteed unsafe set,
Gc¬s, and the top left plot in Figure 15 directly plots how the
IoU improves with the number of demonstrations. Precisely,
we measure IoU .

=
Vol(S∩Gc

¬s)
Vol(S)+Vol(Gc

¬s)−Vol(S∩Gc
¬s) . The low IoU

values for lower numbers of demonstrations is due to
overapproximation of the unsafe set in the α component
(arising from imperfect knowledge of the suboptimality
bound); the fifth demonstration, where α takes values near
−π, π greatly reduces this overapproximation and hence
improves the IoU value greatly. The middle columns of
Figure 15 compares the safe set (the complement of the true
unsafe set) and the complement of an inner approximation
of the learned unsafe set, showing that the two match well,
albeit with a larger gap than for the optimal case. As with
the optimal case, this gap can be further reduced with more
demonstrations. Note also that the safe set is guaranteed to
be an inner approximation of the true safe set, as is the case
for all axis-aligned box parameterizations. The right columns
of Figure 15 display projections of the recovered safe sets,
which closely match the true safe sets.

7.3 3D angular velocity constraint for a 12D
quadrotor model

In this example, we learn a three-dimensional hyper-
rectangular angular velocity constraint for a quadrotor with
twelve-dimensional dynamics (c.f. pages 17-18 of Sabatino
(2015)):
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χ̇
ẏ
ż
α̇

β̇
γ̇
χ̈
ÿ
z̈
α̈

β̈
γ̈



=



χ̇
ẏ
ż

β̇ sin(γ)
cos(β)

+ γ̇ cos(γ)
cos(β)

β cos(γ)− γ̇ sin(γ)

α̇+ β̇ sin(γ) tan(β) + γ̇ cos(γ) tan(β)
− 1
m

[sin(γ) sin(α) + cos(γ) cos(α) sin(β)]u1

− 1
m

[cos(α) sin(γ)− cos(γ) sin(α) sin(β)]u1

g − 1
m

[cos(γ) cos(β)]u1
Iy−Iz
Ix

β̇γ̇ + 1
Ix
u2

Iz−Ix
Iy

α̇γ̇ + 1
Iy
u3

Ix−Iy
Iz

α̇β̇ + 1
Iz
u4



(16)

For our purposes, we convert the dynamics to dis-
crete time by performing forward Euler integration with
discretization time δt = 0.4 seconds. The state is x =
[χ, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇]>, and the constants are g =
−9.81m/s2, m = 1kg, Ix = 0.5kg ·m2, Iy = 0.1kg ·m2,
and Iz = 0.3kg ·m2.

In this scenario, the quadrotor must avoid a known unsafe
set in (χ, y, z): (χ, y, z) /∈ [−0.5, 0.5]× [−0.5, 0.5]×
[−0.5, 0.5] while also ensuring that angular velocities
are below a threshold: (α̇, β̇, γ̇) ∈ [α̇, ¯̇α]× [β̇,

¯̇
β]× [γ̇, ¯̇γ]

(see Figure 17). Specifically, the (x, y, z) unsafe set is
known a priori and the (α̇, β̇, γ̇) safe set is to be inferred
from demonstrations. Two demonstrations optimizing
c(ξx, ξu) =

∑T−1
i=1 ‖[χi+1, yi+1, zi+1, α̇i+1, β̇i+1, γ̇i+1]> −

[χi, yi, zi, α̇i, β̇i, γ̇i]
>‖2 (penalizing acceleration and

path length) are computed by solving trajectory
optimization problems using IPOPT (Wächter and
Biegler (2006)), where T = 25 and control constraints
[0,−0.02,−0.02,−0.02]> ≤ ut ≤ [mg, 0.02, 0.02, 0.02]>

for all t.
The constraint is recovered with Problem 6, where

H(θ) = [I,−I]> and h(θ) = θ = [¯̇α,
¯̇
β, ¯̇γ, α̇, β̇, γ̇]>. The

initial search space for the parameters θ is constrained to
[−π2 , π2 ]× [−π2 , π2 ]× [−π2 , π2 ].

The left column of Figure 18 shows that as the number of
demonstrations increases, Gs approaches the true safe set S
and G¬s approaches the true unsafe set A, respectively. As
with the optimal 7-DOF arm example, IoU .

= Vol(Ac)

Vol(Ĝc
¬s)
→ 1.

The center columns of Figure 18 directly plots a comparison
between the safe set and the complement of an inner
approximation of the unsafe set, showing that the two
match exactly. The right column of Figure 18 displays the
recovered safe set, which matches exactly with the true safe
set displayed in Figure 17.

8 Discussion
In this section, we summarize the main takeaways from the
theoretical analysis and experiments:
Learnability of unsafe states: When gridding the constraint
space, only grid cells that lie within some distance to the
boundary of the unsafe set can be learned guaranteed unsafe.
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Figure 16. VR setup. Top: VR environment. The green box
represents the position constraints. The end effector is commanded
to move by selecting and dragging to a desired position with the
HTC Vive controllers. Bottom: Vive hardware.
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Figure 17. Left: Known unsafe set in xyz space is displayed in
red. Position components of demonstrations are overlaid. Right:
Unknown unsafe set in angular velocity space is displayed in gray.
Angular velocity components of demonstrations are overlaid.

For discrete time systems, this distance is the maximum
distance the system can travel in one time-step (see Theorem
1); for continuous systems, without time discretization, only
the boundary of the unsafe set can be learned guaranteed
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Figure 18. Constraint recovery for 12D quadrotor, optimal
demonstrations. Left, top: Unsafe set error: error in volume
between the Ĝc¬s and Ac as a function of demonstrations. Left,
bottom: Safe set error: error in volume between Gs and S. Center:
projections of G¬s using all demonstrations. Right: Gs using all
demonstrations.

unsafe (see Theorem 1). This is reflected in the first row
of Figure 8, where cells further from the boundary of the
unsafe set are not learned guaranteed unsafe. However, when
leveraging a constraint parameterization, the set of constraint
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states that can be learned guaranteed unsafe expands to states
which can be implied unsafe by states within some distance
to the boundary and the parameterization (Theorem 4). This
can be seen in all the high-dimensional examples (Sections
7.2.1-7.3), where states deep in the unsafe set can be learned
guaranteed unsafe.
Learnability of safe states: When gridding the constraint
space, due to the independence of grid cells (i.e. learning
that some cell is guaranteed unsafe can never imply that a
different cell is guaranteed safe), the only cells that can be
learned guaranteed safe are those visited by demonstrations.
However, when using a parameterization, learning that
certain states are unsafe can imply that other states must be
safe, under the assumption that the true constraint can be
represented with the given parametrization (see Figure 3 and
the examples in Sections 7.2.1-7.3).
Conservativeness of guaranteed learned unsafe states:
When gridding the constraint space, under assumptions on
alignment of the grid with the unsafe set and discretization
frequency, the set of guaranteed learned unsafe states is
conservative (see Theorems 2 and 3). This is demonstrated
in the results (Figure 8, rows 1 and 2). When these
assumptions do not hold, the set of guaranteed learned
unsafe states is contained within a padded version of the
true unsafe set (see Figure 8, row 3, and Figure 9 for
examples where overapproximation occurs due to the time-
discretization chosen). When using a parameterization, the
set of guaranteed learned unsafe states is conservative for
discrete time systems (see Theorem 5) and is conservative
within a padded version of the true unsafe set for
continuous time systems (see Corollary 4). Examples of this
conservativeness are shown in Figures 13 and 18, and an
example where overapproximation occurs due to continuous
dynamics is shown in Figure 15.
Limitations: Some limitations of our method are as follows:

• Sampling lower-cost trajectories can be slow for
systems where the set of lower-cost trajectories
satisfying the known constraints, T ξ

∗
xu

A , is “thin”. For
these cases, hit-and-run sampling can be forced to take
very small steps at each iteration, reducing the spread
of samples inside T ξ

∗
xu

A . This tends to happen when
the dynamics are highly constrained. In future work,
we will investigate more efficient sampling techniques
for when T ξ

∗
xu

A takes a specific form.

• To scale to high-dimensional constraint spaces, we
assume a known, relatively simple parameterization,
which is in general not the case for real constraints.
This has been partly addressed in Chou et al. (2019)
by approximating complex unsafe sets with unions of
simple unsafe sets as building blocks.

• While we want the set of guaranteed learned
(un)safe states to be a conservative estimate, the
level of conservativeness may be high. Excessive
conservativeness can be mitigated for the parametric
case by obtaining the set of constraint parameters
which are consistent with the demonstrations and
computing a probabilistic measure of how (un)safe
a given state is based on how many consistent

parameters mark it as (un)safe, as is proposed in Chou
et al. (2020b).

• While our method is resilient to suboptimal demon-
strations within a known bound of the globally-
optimal cost, it lacks guarantees for locally-optimal
demonstrations. An alternative approach using the
Karush-Kahn-Tucker optimality conditions has been
recently proposed in Chou et al. (2020a) to enable
constraint learning from locally-optimal demonstra-
tions. Another method Knuth et al. (2020) has been
developed to handle demonstrations with large subop-
timality bound, where the suboptimality arises from
visual occlusions that limit the demonstrators’ knowl-
edge about the environment and thus their ability to
plan optimally.

9 Conclusion
In this paper we propose an algorithm that learns constraints
from demonstrations, which acts as a complementary method
to IOC/IRL algorithms. We analyze the properties of our
algorithm as well as the theoretical limits of what subset of
a safe set and an unsafe set can be learned from only safe
demonstrations. The method works well on a variety of high-
dimensional system dynamics and can be adapted to work
with suboptimal demonstrations. We develop two variants
of our algorithm to learn constraints with various amounts
of structure: a gridded version which assumes no constraint
structure but scales exponentially with constraint dimension,
and a parametric version which assumes known parametric
constraint structure and scales gracefully to high dimensional
constraint spaces. We further show that our method can also
learn constraints in a feature space. Future work involves
using learned constraints for probabilistically safe planning
and developing safe exploration strategies for reducing the
uncertainty in the learned constraint.
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A Analysis
We review the most important results in this section:

• Theorem A.1 shows that all states that can be
guaranteed unsafe must lie within some distance to
the boundary of the unsafe set. Corollary A.1 shows
that the set of guaranteed unsafe states shrinks to
a subset of the boundary of the unsafe set when
using a continuous demonstration directly to learn the
constraint.

• Corollary A.2 shows that under assumptions on the
alignment of the grid and unsafe set for the discrete
time case, the guaranteed learned unsafe set is a
guaranteed underapproximation of the true unsafe set.

• For continuous trajectories that are then discretized,
Theorem A.3 shows us that the guaranteed unsafe
set can be made to contain states on the interior of
the unsafe set, but at the cost of potentially labeling
states within some distance outside of the unsafe set as
unsafe as well.

• Theorem 4 shows that for the parametric case, all states
that can be guaranteed unsafe must be implied unsafe
by the states within some distance to the boundary of
the unsafe set and the parameterization.

• Theorem A.5 shows that for the discrete time case,
the guaranteed safe and guaranteed unsafe sets are
inner approximations of the true safe and unsafe
sets, respectively. For the continuous time case, the
recovered sets are inner approximations of a padded
version of the true sets.

For convenience, we repeat the definitions and include
some illustrations for the sake of visualization. For clarity,
the numbers of the definitions, theorems, and corollaries in
the appendix match with those in the main body.

A.1 Learnability
In this section, we will provide analysis on the learnability of
unsafe sets, given the known constraints and cost function.
Most of the analysis will be based off unsafe sets defined
over the state space, i.e. A ⊆ X , but we will extend it to the
feature space in Corollary A.2. If a state x can be learned to
be guaranteed unsafe, then we denote that x ∈ Gz¬s∗, where
Gz¬s∗ is the set of all states that can be learned guaranteed
unsafe.

We begin our analysis with some notation.

Definition A.1. Signed distance. Signed distance from
point p ∈ Rm to set S ⊆ Rm, sd(p,S) = − infy∈∂S ‖p−
y‖ if p ∈ S; infy∈∂S ‖p− y‖ if p ∈ Sc.

The following theorem describes the nature of Gz¬s∗:
Theorem A.1. Learnability (discrete time). For trajecto-
ries generated by a discrete time dynamical system satisfying
‖xt+1 − xt‖ ≤ ∆x for all t, the set of learnable guaranteed
unsafe states is a subset of the outermost ∆x shell of the
unsafe set: Gz¬s∗ ⊆ {x ∈ A | −∆x ≤ sd(x,A) ≤ 0}.

∆x

∆x

∆x

∂A

Figure A.1. Illustration of the outermost ∆x shell (shown in red)
of the unsafe set A. The hatched area cannot be learned
guaranteed safe.

Proof: Consider the case of a length T unsafe trajectory
ξ = {x1, . . . , xN}, x1 ∈ A ∨ . . . ∨ xT ∈ A. For a state to
be learned guaranteed unsafe, T − 1 states in ξ must be
learned safe. This implies that regardless of where that
unsafe state is located in the trajectory, it must be reachable
from some safe state within one time-step. This is because if
multiple states in ξ differ from the original safe trajectory
ξ∗, to learn that one state is unsafe with certainty means
that the others should be learned safe from some other
demonstration. Say that x1, . . . , xi−1, xi+1, . . . , xT ∈ S, i.e.
they are learned safe. Since (‖xi+1 − xi‖ ≤ ∆x) ∧ (‖xi −
xi−1‖ ≤ ∆x) and xi−1, xi+1 ∈ S, xi must be within ∆x of
the boundary of the unsafe set: −miny∈∂A ‖xi − y‖ ≥ ∆x,
implying −∆x ≤ sd(xi) ≤ 0.

Remark For linear dynamics, ∆x can be found via

maximize
x∈X ,u∈U

‖Ax+Bu− x‖ (17)

In the case of general dynamics, an upper bound on ∆x
can be found via

∆x ≤ sup
x∈X ,u∈U,t∈{t0,t0+1,...,T}

‖f(x, u, t)− x‖ (18)

Corollary A.1. Learnability (continuous time). For con-
tinuous trajectories ξ(·) : [0, T ]→ X , the set of learnable
guaranteed unsafe states shrinks to the boundary of the
unsafe set: Gz¬s∗ ⊆ {x ∈ A | sd(x,A) = 0}.
Proof: The output trajectory of a continuous time system
can be seen as the output of a discrete time system in the
limit as the time-step is taken to 0. In this case, as long
as the dynamics are locally Lipschitz continuous, ∆x

.
=

lim∆t→0 ‖x(t+ ∆t)− x(t)‖ → 0 (Khalil (2015)), and via
Theorem A.1, the corollary is proved.

Depending on the cost function, Gz¬s∗ can become
arbitrarily small: some cost functions are not very
informative for recovering a constraint. For example, the path
length cost function used in many of the experiments (which
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was chosen due to its common use in the motion planning
community), prevents any lower-cost sub-trajectories from
being sampled from straight sub-trajectories. The overall
control authority that we have on the system also impacts
learnability: the more controllable the system, the more of
the ∆x shell is reachable. In particular, a necessary condition
for any unsafe states to be learnable from a demonstration
of length T + 1 starting from x0 and ending at xT is for
there to be more than one trajectory which steers from x0 to
xT in T + 1 steps while satisfying the dynamics and control
constraints.

A.2 Conservativeness
For the analysis in this section, we will assume that the
unsafe set has a Lipschitz boundary; informally, this means
that ∂A can be locally described by the graph of a Lipschitz
continuous function. A formal definition can be found in
Dacorogna (2015). We define some notation:

Definition A.2. Normal vectors. Denote the outward-
pointing normal vector at a point p ∈ ∂A as n̂(p).
Furthermore, at non-differentiable points on ∂A, n̂(p) is
replaced by the set of normal vectors for the sub-gradient
of the Lipschitz function describing ∂A at that point (Allaire
et al. (2016)).

Definition A.3. γ-offset padding. Define the γ-offset
padding ∂Aγ as: ∂Aγ = {x ∈ X | x = y + dn̂(y), d ∈
[0, γ], y ∈ ∂A}.
Definition A.4. γ-padded set. We define the γ-padded set of
the unsafe set A, A(γ), as the union of the γ-offset padding
and A: A(γ)

.
= ∂Aγ ∪ A.

Definition A.5. Maximum grid size. Let R(zi) be the
radius of the smallest ball which contains grid cell zi:
R(zi)

.
= minr minxi r, subject to zi ⊆ Br(xi), for some

optimal center xi.
Furthermore, let R∗ be the radius of the smallest

ball which contains each grid cell zi, i = 1, . . . , G: R∗ =
max(R(z1), . . . , R(zG)).

We introduce the following assumption, which is
illustrated in Figure A.3 for clarity:
Assumption 1: The unsafe set A is aligned with the grid
(i.e. there does not exist a grid cell z containing both safe
and unsafe states in its interior).

Theorem A.2. Discrete time conservative recovery of unsafe
set. For a discrete-time system, if Assumption 1 holds,
Gz¬s ⊆ A. If Assumption 1 does not hold, then Gz¬s ⊆ A(R∗).

Proof: In discrete-time, we know that each trajectory
sampled using Algorithm 1 starting from an optimal
demonstration contains at least one truly unsafe state, i.e. for
all ξj , j ∈ {1, . . . , N¬s}, there exists x ∈ ξj , x ∈ A. Then,
if Assumption 1 holds, enforcing zi 3 x to be unsafe can
never also enforce that some safe state y ∈ S is unsafe.
If Assumption 1 does not hold, suppose that there exists
x ∈ ∂A which is learned guaranteed unsafe, and that x ∈
zi, where (zi ∩ A) ⊆ ∂A (i.e. the grid cell only touches
the boundary of the unsafe set). Then, Gz¬s ⊆ A(R(zi)) ⊆
A(R∗).

Note that if we deal with continuous trajectories directly,
the guaranteed learnable set shrinks to a subset of the

γ

∂A

γ

γ

A(γ)

A
∂Aγ

Figure A.2. Illustration of the γ-padded set A(γ), which is the
union of the red and white regions. The γ-offset padding is
displayed in red. The original set A is shown in white.

boundary of the unsafe set, ∂A. However, if we discretize
these trajectories, we can learn unsafe states lying in the
interior, at the cost of conservativeness guarantees holding
only for a padded unsafe set.

The following results hold for continuous time trajecto-
ries. We begin the discussion with an intermediate result we
will need for Theorem A.3:

Lemma A.1. Maximum distance. Consider a continuous
time trajectory ξ : [0, T ]→ X . Suppose it is known that
in some time interval [a, b], a ≤ b, a, b ∈ [0, T ], ξ is
unsafe; denote this sub-segment as ξ([a, b]). Consider
any t ∈ [a, b]. Then, the signed distance from ξ(t) to
the unsafe set, sd(ξ(t),A), is bounded by Dξ([a, b])

.
=

supt1∈[a,b],t2∈[t1,b] ‖ξ(t1)− ξ(t2)‖2.

Proof: Since there exists t̃ ∈ [a, b] such that ξ(t̃) ∈ A,
supt∈[a,b] sd(ξ(t),A) = supt∈[a,b] sd(ξ(t), ξ(t̃)) ≤
supt1∈[a,b],t2∈[t1,b] ‖ξ(t1)− ξ(t2)‖2.

We introduce another assumption, which is illustrated in
Figure A.4 for clarity:
Assumption 2: The time discretization of the unsafe
trajectory ξ : [0, T ]→ X , {t1, . . . , tN}, ti ∈ [0, T ], for all i,
is chosen such that there exists at least one discretization
point in the interior of each cell that the continuous trajectory
passes through (i.e. if ∃t ∈ [0, T ] such that ξ(t) ∈ z, then
∃ti ∈ {t1, . . . , tN} such that ξ(ti) ∈ z).

We also introduce a convention for tie-breaking in
Problems 2, 4, and 5. Suppose there exists an unsafe
trajectory ξ for which a safe cell z is incorrectly
learned guaranteed unsafe due to time discretization. If a
demonstration is added to the optimization problem which
marks cell z as safe, to avoid infeasibility, we remove the
unsafe trajectory ξ from the optimization problem.

Theorem A.3. Continuous-to-discrete time conservative-
ness. The following results hold for continuous time sys-
tems:
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Figure A.3. Illustration of Assumption 1 - all grid cells are either
fully contained by A or Ac.
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z8

Figure A.4. Illustration of Assumption 2: each cell z that the
trajectory passes through must have a time discretization point
(shown as a dot).

1. Suppose that both Assumptions 1 and 2 hold. Then, the
learned guaranteed unsafe set Gz¬s, defined in Section
4.4.1, is contained within the true unsafe set A.

2. Suppose that only Assumption 2 holds. Then, the
learned guaranteed unsafe set Gz¬s is contained within
the R∗-padded unsafe set, A(R∗).

3. Suppose that neither Assumption 1 nor Assump-
tion 2 holds. Furthermore, suppose that Problems
2, 4, and 5 are using M sub-trajectories sam-
pled with Algorithm 1 as unsafe trajectories, and
that each sub-trajectory is defined over the time
interval [ai, bi], i = 1, . . . ,M . Denote Dξ([a, b])

.
=

supt1∈[a,b],t2∈[t1,b] ‖ξ(t1)− ξ(t2)‖2, for some tra-
jectory ξ. Denote D∗ .= maxi∈{1,...,M}D∗ξi([ai, bi]).
Then, the learned guaranteed unsafe set Gz¬s is
contained within the D∗ +R∗-padded unsafe set,
A(D∗ +R∗).

Proof: Let’s prove the case where both Assumptions 1 and
2 hold. By Assumption 1, all cells z which contain unsafe
states x ∈ A must be fully contained in the unsafe set:
z ∈ A. Now, suppose there exists a trajectory ξ : [0, T ]→ X
which is unsafe (i.e it satisfies the known constraints and has
lower cost than a demonstration). Then, there exists at least
one t ∈ [0, T ] such that ξ(t) ∈ A. By Assumption 2, there
exists a discretization point ti ∈ [0, T ] such that ξ(ti) lies

within some cell z, and z ∈ A by Assumption 1. Hence, we
will only learn grid cells within A to be unsafe: Gz¬s ⊆ A.

If only Assumption 2 holds, Gz¬s ⊆ A(R∗) due to the
gridding: suppose there exists a cell zk containing both safe
and unsafe states which is learned guaranteed unsafe. Then,
by padding the unsafe set to contain any grid cell z1, . . . , zG,
zk is fully contained, and hence the algorithm returns a
conservative estimate of the D∗ +Rk ≤ D∗ +R∗-padded
unsafe set.

Let’s prove the case where neither assumption holds.
Suppose in this case, there exists a cell z 6⊆ A which is
truly safe, but for which we have no demonstration that says
cell z is safe. Now, suppose there exists an unsafe trajectory
ξj([aj , bj ]) passing through z which violates Assumption 2.
Suppose that ξj(ti) ∈ z, and {t1, . . . , tN} is chosen such that
for all j ∈ {1, . . . , N} \ {i}, ξj(ti) belongs to a known safe
cell. Then, we may incorrectly learn that z ∈ Gz¬s, as we
force at least one point in the sampled trajectory to be unsafe.
Via Lemma A.1, we know that ξj(ti) is at most Dξj ([aj , bj ])
signed distance away from A. Hence, for this trajectory,
any learned guaranteed unsafe state must be contained in
the Dξj ([aj , bj ])-padded unsafe set. For this to hold for all
unsafe trajectories sampled with Algorithm 1, we must pad
the unsafe set by D∗. Lastly, to account for the gridding,
suppose that ξj∗(ti) is contained in cell zk, which is then
marked unsafe. Then, by padding the set to contain zk, the
algorithm returns a conservative estimate of the D∗ +Rk ≤
D∗ +R∗-padded unsafe set.

Remark In practice, we observe that the bound in
Theorem A.3 when using only Assumption 1 is quite
conservative, and as more demonstrations are added to
the optimization, using the tie-breaking rule described
previously removes the overapproximations described
by Theorem A.3. Furthermore, though the experiments
are implemented using only Assumption 1, ensuring
Assumption 2 also holds is straightforward as long as the
grid cells are large enough such that finding a sufficiently
fine time-discretization is efficient.

Remark Note that for the cases where Assumption 1 does
not hold, safe states can be incorrectly forced to be unsafe;
thus, the constraint recovery program can become infeasible.
In these situations, we use the tie-breaking rule described
before the statement of Theorem A.3 to keep the program
feasible.

Remark If some state x on a demonstration lies directly on
the boundary between two grid cells zi and zj , neither zi
nor zj is enforced to be safe unless either of zi or zj is
learned to be unsafe; then the other grid cell can be labeled
safe. Furthermore, the demonstrations that appear to lie on
the boundary of the unsafe set actually lie in the interior
of the safe set and very close to the boundary due to the
solvers’ numerical tolerance; hence we do not actually have
any demonstrations lying exactly on the boundary of any grid
cells in the experiments.

Corollary A.2. Continuous-to-discrete feature space conser-
vativeness. Let the feature mapping φ(x) from the state
space to the constraint space be Lipschitz continuous with
Lipschitz constant L. Then, the following results hold:
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1. Suppose both Assumptions 1 and 2 (used in Theorem
3) hold. Then, our method ensures Gz¬s ⊆ A.

2. Suppose only Assumption 2 holds. Then, our method
recovers a guaranteed subset of the LR∗-padded
unsafe set, A(LR∗), in the feature space.

3. Suppose neither Assumption 1 nor Assumption 2 holds.
Then, our method recovers a guaranteed subset of
the L(D∗ +R∗)-padded unsafe set,A(L(D∗ +R∗)),
where D∗ is as defined in Theorem 3.

Proof: Under Assumptions 1 and 2, the result follows
directly from the logic in Theorem A.3. Now, consider the
case where only Assumption 2 holds. From the definition
of Lipschitz continuity, ‖φ(x)− φ(y)‖ ≤ L‖x− y‖. From
Theorem A.3, the unsafe set estimate is a subset of the
R∗-padded estimate in the continuous space case. Using
Lipschitz continuity, the value of the feature can at most
change by LR∗ from the boundary of the true constraint
set to the boundary of the padded set; hence, the statement
holds. Analogous reasoning holds for the case where neither
assumption holds.

A.3 Learnability: Parametric
In this section, we develop results for learnability of the
unsafe set in the parametric case. We begin with the
following notation:

Definition A.6. Implied unsafe set. For some set B ⊆ Θ,
denote

I(B)
.
=
⋂
θ∈B
{x | g(x, θ) ≤ 0} (19)

as the set of states that are implied unsafe by restricting the
parameter set to B. In words, I(B) is the set of states for
which all θ ∈ B mark as unsafe.

Lemma A.2. Suppose B ⊆ B̂, for some other set B̂. Then,
I(B̂) ⊆ I(B).

Proof: By definition,

I(B̂) =
⋂
θ∈B̂

{x | g(x, θ) ≤ 0}

=
⋂

θ∈
(
B∪(B̂\B)

){x | g(x, θ) ≤ 0}

⊆
⋂
θ∈B
{x | g(x, θ) ≤ 0}

= I(B).

Lemma A.3. Denote the ∆x-shell of A as A∆x, where ∆x
is as defined in Theorem A.1. Then, each unsafe trajectory ξj
with start and goal states in the safe set contains at least one
state in A∆x: ∀j ∈ {1, . . . , N¬s},∃x ∈ ξj , x ∈ A∆x.

Proof: For each unsafe trajectory ξj with start and goal
states in the safe set, there exists x ∈ ξj , x ∈ A. Further,
if there exists x ∈ ξj ∈ (A \ A∆x), then there also exists
x ∈ ξj ∈ A∆x. For contradiction, suppose there exists a
time t̂ ∈ {1, . . . , Tj} for which ξj(t̂) ∈ (A \ A∆x) and @t ∈
{1, . . . , Tj} for which ξj(t) ∈ A∆x. But this implies ∃t <

t̂, ‖ξ(t)− ξ(t+ 1)‖ > ∆x or ∃t > t̂, ‖ξ(t)− ξ(t− 1)‖ >
∆x, i.e. to skip deeper than ∆x into the unsafe set without
first entering the ∆x shell, the state must have changed
by more than ∆x in a single time-step. Contradiction. An
analogous argument holds for the continuous-time case.

Denote as G∗¬s the learnable set of unsafe states. Further
denote as F∆x the set of parameters that sets all states in
A∆x as unsafe and all states on safe trajectories as safe. Last,
denote as I(F∆x) the set of states that are implied as unsafe
by restricting the parameter set to F∆x. The following result
states that in discrete time, G∗¬s is contained by I(F∆x).
Furthermore, in continuous time, the same holds, except the
∆x shell is replaced by the boundary of the unsafe set, ∂A.

Theorem A.4. Discrete time learnability for parametric
constraints. For trajectories generated by discrete time
systems, G¬s ⊆ G∗¬s ⊆ I(F∆x), where

F∆x = {θ | ∀i ∈ {1, . . . , Ns},∀x ∈ ξ∗i , g(x, θ) > 0,

∀x ∈ A∆x, g(x, θ) ≤ 0}

Proof: Recall that G¬s .
=
⋂
θ∈F{x | g(x, θ) ≤ 0}, where F

is the feasible set of Problem 3:

F = {θ | ∀i ∈ {1, . . . , Ns},∀x ∈ ξ∗i , g(x, θ) > 0,

∀j ∈ {1, . . . , N¬s},∃x ∈ ξj , g(x, θ) ≤ 0}

We can then show that F∆x ⊆ F , since enforcing that
g(x, θ) ≤ 0 for all x ∈ A∆x implies that there exists x ∈ ξj ,
for all j ∈ {1, . . . , N¬s} such that g(x, θ) ≤ 0, via Lemma
A.3. Then, via Lemma A.2, G¬s = I(F) ⊆ I(F∆x). As this
holds for any arbitrary set of trajectories, G∗¬s ⊆ I(F∆x) as
well, and G¬s ⊆ G∗¬s.
Corollary A.3. Continuous-time learnability for parametric
constraints. For trajectories generated by continuous time
systems, G¬s ⊆ G∗¬s ⊆ I(F∂A), where

F∂A = {θ | ∀x ∈ ξ∗i ,∀i ∈ {1, . . . , Ns}, g(x, θ) > 0,

∀x ∈ ∂A, g(x, θ) ≤ 0}

Proof: Since going from discrete time to continuous time
implies ∆x→ 0, A∆x → ∂A. Then, the logic from the
proof of Theorem A.4 can be similarly applied to show the
result.

A.4 Conservativeness: Parametric
We write conditions for conservative recovery of the unsafe
set and safe set when solving Problems 3 and 6 for discrete
time and continuous time systems.

Theorem A.5. For a discrete-time system, if M in
Problem 6 is chosen to be greater than max(M1,M2),
where M1 = maxxi∈ξs maxθ maxj(H(θ)xi − h(θ))j and
M2 = maxxi∈ξ¬s maxθ maxj(H(θ)xi − h(θ))j , G¬s ⊆ A
and Gs ⊆ S.

Proof:
We first prove that G¬s ⊆ A. Consider first the case where

M =∞ and therefore Problem 6 exactly enforces that at
least one state in each unsafe trajectory is unsafe and all
states on demonstrations are safe.

Suppose for contradiction that there exists some x ∈
G¬s, x /∈ A. By definition of G¬s, g(x, θ) ≤ 0, for all θ ∈ F ,
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where F is the feasible set of parameters θ in Problem 3.
However, as x /∈ A, but for all θ ∈ F , g(x, θ) ≤ 0 we know
that θA /∈ F , where θA is the parameter associated with the
true unsafe setA. However, F will always contain θA, since:

• θA satisfies g(x, θA) > 0 for all x in safe demonstra-
tions, since all demonstrations are safe with respect to
the true θA.

• For each trajectory ξ¬s sampled using Algorithm 1,
there exists x ∈ ξ¬s such that g(x, θA) ≤ 0.

We come to a contradiction, and hence for M =∞, G¬s ⊆
A.

Now, we consider the conditions on M such that choosing
M ≥ const or M =∞ causes no changes in the solution of
Problem 6.M must be chosen such that 1)H(θ)xi − h(θ) >
−M1⇔ H(θ)xi − h(θ) > −∞1, for all safe states xi ∈
ξs, and 2) H(θ)xi − h(θ) ≤M1⇔ H(θ)xi − h(θ) ≤M1
for all states xi on unsafe trajectories ξ¬s. Condition 1 is met
if −M < minxi∈ξs minθ minj(H(θ)xi − h(θ))j , where vj
denotes the j-th element of vector v; denote as M1 an M
which satisfies this inequality. Condition 2 is met if M ≥
maxxi∈ξ¬s maxθ maxj(H(θ)xi − h(θ))j ; denote as M2 an
M which satisfies this inequality. Then, M should be chosen
to satisfy M > max(M1,M2).

The proof that Gs ⊆ S is analogous. If there exists x ∈
Gs, x /∈ S, g(x, θ) > 0, for all θ ∈ F , then θA /∈ F . We
follow the same reasoning from before to show that θA ∈ F
for M =∞. Now, provided the condition on M holds, we
reach a contradiction.

Corollary A.4. For a continuous-time system, where
demonstrations are time-discretized as discussed in Section
A.2, if M is chosen as in Theorem A.5, Gs ⊆ S and G¬s ⊆
A(D∗), where D∗ is as defined in Theorem A.3.

Proof: The reasoning for Gs ⊆ S follows from the proof of
Theorem A.5.

For proving G¬s ⊆ A(D∗), we follow the proof of
Theorem A.3 until it is shown that any learned guaranteed
unsafe state must be contained in the A(D∗). However, for
the parametric case, there is no notion of a grid and hence the
further padding by R∗ is unnecessary.
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