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ABSTRACT
While reaching for your morning coffee you may accidentally bump into the table,

yet you reroute your motion with ease and grab your cup. An effective autonomous

robot will need to have a similarly seamless recovery from unexpected contact. As

simple as this may seem, for decades manufacturing robots were not able to sense

contact quickly and precisely enough to stop during a collision, so robots in factory

environments lived in tightly controlled and expensively precise work zones. Recent

collaborative robots can now stop after collision so successfully they have been deemed

safe to work around people. However unexpected contact is still treated as an error

that an operator is expected to resolved. Robots operating in our less-structured

daily environments will need to reason about the information they have gained from

contact and replan autonomously.

This thesis examines planning under uncertainty with contact sensitive robot

arms. First addressed is the specific information gained from sensing contact. Most

robots do not have skin and cannot precisely sense the location of contact. This

leads to the proposed Collision Hypothesis Set model for representing a belief over

the possible occupancy of the world sensed through contact. To capture the specifics

of planning in an heavily occluded environment with this measurement model, we

develop a POMDP approach called the Blindfolded Traveler’s Problem and propose

several strategies for practical approximate solutions. Finally, we examine belief rep-

resentations for the occupancy of the world to more closely approximate a rich prior

over possible objects. We propose a neural network for shape completion that com-

bines both visual and contact information.

xi



CHAPTER I

Introduction

Traditional robot motion planning algorithms were designed to prevent contact

with the environment. With the introduction of collaborative robot arms such as the

UR series, Kuka iiwa, and Franka, unintended collisions are no longer the detrimental

event that breaks the robot or harms a human. These robots are able to sense external

forces on the arms and come to a safe stop before damage occurs. However, in a

typical industrial workflow an unintended contact will result in an emergency-stop

behavior, and a human operator must remedy the discrepancy between the robot’s

understanding and real world obstacles. In academic labs the situation is similar. If

a robot collides with a table because the perception system is not callibrated, we fix

the perception system instead of using the information learned by the contact.

This dissertation is motivated by the research question “How can robots use sensed

unexpected contact information to understand their environment and achieve tasks

with an imperfect perception system?”. By answering this question I hope to move

towards enabling robots to operate in cluttered scenarios with imperfect sensing while

not requiring frequent human corrections.

A challenge in all of my approaches will be the very limited information a contact

measurement provides. Detecting no contact along the arms indicates that all points

inside and on the surface of the robot are not part of the environment. By contract,

detecting a contact indicates that some point on the robot surface is in contact, but

there will be uncertainty as to which point caused this measurement. Consider the

large hypothesis space of all possible ways of assigning occupancy, and the smaller

version space of all hypothesis shapes consistent will all observations. Probing the

occupancy of a single point divides the hypothesis space in half, providing one bit

of information. A contact measurement is less informative, providing less than one

bit of information. From this analysis using contact information may first appear

hopeless.
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Figure 1.1: Overview of method in this Thesis

Fortunately there are two features we leverage. First, our primary objective is

to achieve some task, such as reaching some final goal position, thus the robot does

not need to determine the full occupancy of the world. Second, environments are

highly structured, thus by knowing the occupancy of a few points the occupancy of

much of the scene can be inferred. The space of reasonable shapes is far smaller and

more orderly than the space of all possible occupancies. I explore both of these topics

separately as well as combined them into a single planning framework.

1.1 Problem Characterization

This thesis examines two challenges of planning with contact information. The

first problem of Reconstruction aims to estimate the geometry of the world using the

sensed information. The second problem of Belief Space Planning instructs the robot

how to move given the objectives and beliefs over reconstructed worlds. Figure 1.1

shows this interaction.

1.1.1 Reconstruction

Reconstruction is the task of estimating the geometry of the world from obser-

vations. In this work, the “world” refers to a binary voxelgrid of occupied and free

space. Contact sensing and RGBD (depth camera) observations are the two forms of

observation, with some chapters focusing on a single sensing modality.

2



Reconstruction Metrics: When considering reconstruction as an isolated task,

approaches are evaluated on the accuracy of the reconstruction using either the Inter-

section over Union (IoU) or Chamfer Distance (Barrow et al., 1977) metrics. Recon-

struction accuracy is, however, a proxy for the true desired metric of reconstruction

that improves the overall robot performance in reaching a goal. Informally, the de-

sired metric would measure the reconstruction of only the important regions. This

however cannot be measured without the full planning context.

Multi-hypothesis Reconstruction: We consider approaches capable of generating

multiple distinct reconstructions. While single hypothesis approaches can score well

on the reconstruction metrics, they do not integrate well into belief-planning frame-

works. Many of our multi-hypothesis approaches are derived from Bayesian origins,

producing samples conditioned on priors and observations. However the complexity

of the observations requires approximations which break the formal Bayesian reason-

ing. Thus our belief approaches are often “Bayesian Inspired”, rather than strictly

Bayesian.

1.1.2 Belief Space Planning

The robot makes use of the reconstructions described using Belief Space Planning

e.g. (Somani et al., 2013). Since the true world is not known with certainty, the

robot must evaluate potential actions for a belief over possible worlds to determine

how to reach the goal.

Robot Motion Planning: This thesis considers the task of robot motion planning

as traversing a sequence of collision-free joint configurations to reach a target configu-

ration. Other forms of motion planning, such as force (impedance) control, feedback

loops, and robot dynamics were implemented to make our robot function, but are

not the focus of the algorithms described. We consider motion planning through the

continuous free space which is done both using random sampling, and by constructing

a roadmap graph.

Exploration vs. Exploitation: This thesis continues a theme common in many

works on planning with uncertainty addressing two valuable components of actions.

Exploration chooses actions that gain information yet do not make direct progress

towards a goal. Exploitation leverages the information learned so far but may forgo

informative actions in favor of progress towards the goal under the current estimate(s)

of the world.

Static World: Throughout this work the world is assumed to be static. Objects

must not move, even when bumped, for the guarantees and methods to apply exactly.

3



Of course, real robot collision will likely cause objects to move slightly, and these slight

motions are often not problematic in practice. For extending this work to movable

objects, see Chapter VI.

1.2 Summary of Contributions

This thesis makes the following contributions:

• I introduce the Collision Hypothesis Set observation model to capture the uncer-

tainty of a contact measurement. I introduce a method of interleaving planning

and control using the observed Collision Hypothesis Sets

• I introduce the Blindfolded Traveler’s Problem to cast the motion planning

under uncertainty with contact measurements into a graph search problem. I

explore the effectiveness of many heuristic methods adapted to BTP.

• I create the Plausible Shape Sampling Network (PSSNet) for generating multiple

diverse yet plausible completions of 3D objects from depth images.

• I create the Constrained Latent Shape Projection (CLASP) algorithm to predict

plausible shape completions consistent with both the depth image and contact

information from the robot. This can be integrated into the Blindfolded Trav-

eler’s Problem as the belief occupancy model.

4



CHAPTER II

Planning with Contact Sensing Uncertainty

This first chapter addresses the fundamental questions of contact sensing “What

information is gained from a contact measurement?” and “How can we construct

planning algorithms using a belief learned from contact measurements?”. This chap-

ter introduces the Collision Hypothesis Set belief distribution and proposes planning

algorithms to minimize the probability of collision over this belief.

2.1 Introduction

Robots rely on sensors to construct models of the world for use in motion planning,

but in many practical scenarios sensing limitations result in an incomplete or inac-

curate model, resulting in plans that can collide with unobserved obstacles. Sensing

limitations occur in manipulation tasks due to limited range and field of view, invalid

measurements caused by glare, and insufficient accuracy for motion in tight areas.

Furthermore, robots may reach into occluded areas during maintenance and assem-

bly tasks (e.g. reaching into a car engine) and household tasks (e.g. reaching deep

into a cabinet or behind a box). In the scenarios examined in this paper collisions

between the arm and environment can be sensed without damage to the robot and

used to inform future plans, but a lack of tactile sensing generates large non-Gaussian

uncertainty over the belief of the occupancy of the environment.

The task we consider is to move from a given start configuration through free space

to a goal configuration as quickly as possible, however the free space is not known a

priori and the occupancy must be sensed through contact. We do not require tactile

sensing to detect contact since most robots do not possess touch-sensitive skin. Even

robots with such skin may pick up objects, effectively extending their kinematic chain

with unsensorized geometry. We assume a robot is able to detect contact using joint

5



torque feedback as is available on many robot arms. We further use that joint torque

to determine which links may be in contact.

The task of moving to a goal in an unknown environment can be framed as a

Partially Observable Markov Decision Process (POMDP), where the belief over occu-

pancy is obtained through noisy collision measurements. In our implementation the

workspace, observed collisions, and known obstacles are all stored in voxel grids of size

N , thus the size of a belief state is 2N . A measurement either indicates a configuration

along a path did not collide and thus the voxels occupied by the robot do not contain

obstacles, or that a collision occurred and thus at least one voxel blocked movement

to the new configuration. Measurement uncertainty does not primarily come from

sensor noise, but because a measurement only provides a set of voxels where at least

one is occupied. The size of the belief space and the measurement uncertainty make

this problem intractable for a standard POMDP solver, thus we propose an approach

which is specialized to our domain.

The key contribution of this chapter is a representation for contact uncertainty

that we call Collision Hypothesis Sets (CHS), which enables planners to more ac-

curately reason about potential collisions. This chapter first reviews prior work on

planning in uncertain environments (Sec. 2.2). The task is then defined (Sec. 4.3),

the CHS representation is motivated and presented (Sec. 2.4), and the planning and

control architecture is then described (Sec. 2.5). Results are reported for experiments

performed in simulation and on a physical robot, comparing the CHS representation

to a baseline unified cost grid (Sec. 2.6). With enough open free space the two

methods perform similarly. However, when the robot must enter narrow passages

to reach a goal the CHS representation reduced the total execution time by approx-

imately a factor of 1.5 to 3. Furthermore, in narrow passage scenarios where the

baseline method only reached the goal in approximately 40-60% of trials, using CHSs

produced a success rate of 100%.

2.2 Related Work

A core component of motion planning is the ability to check the validity of a path.

Many motion planning algorithms assume deterministic collision checking but with

uncertainty in the robot or environment it is only possible to calculate the probability

of collision. With an arbitrary belief Monte Carlo simulations (MCS) can be used to

estimate collision probabilities although this approach is computationally expensive

and generally not practical for large state spaces, so many approaches apply only to
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specific belief distributions.

Assuming Gaussian uncertainty over the robot and specific objects enables com-

putation of collision probability for a single configuration (Blackmore, 2006; van den

Berg et al., 2012; Toit and Burdick , 2011). To estimate the collision probability along

a full path, rather than at an individual configuration, (Patil et al., 2012) propagates

only the portion of a Gaussian robot belief that are not in collision. Other forms

of uncertainty, such as point cloud measurements from range sensors, may be better

modeled with specifically-tailored distributions dependent on distance and incidence

angle (Bae et al., 2009). However, none of these distributions accurately model the

information obtained when a robot contacts the environment.

Localization methods exist that are specifically tailored to model the unusual

contact sensing uncertainty. Using a particle filter, a belief consistent with a contact

measurement can be updated using rejection sampling (Saund et al., 2017), or sam-

pling from the contact manifold (Klingensmith et al., 2016b). Both of these methods

require models of objects in the world, which we do not assume are known. Other

methods use joint position and torques to estimate the contact location on the robot

surface (Koonjul et al., 2011; Bicchi et al., 1993), but require accurate torque mea-

surements to produce accurate estimates. Since we wish to sense contact just above

the noise threshold the torque measurements will contain significant noise, thus we

use a comparatively simple method that more reliably estimates which links may be

in contact.

By treating the probability of collision as a cost, the problem of planning under

uncertainty can be framed as an optimal path planning problem. While there exist

numerous optimal planners through continuous space, such as RRT* (Karaman and

Frazzoli , 2011) and its many variants, these methods rely on a quick computation

of path cost to run efficiently and since computing collision probability is far more

expensive than a typical path length cost these methods ultimately explore too few

nodes for our problem in a reasonable time.

Rather than attempting to minimize the probability of collision, many algorithms

search for a path with some acceptably-low probability of collision. This can be

done conservatively by inflating the robot (Lee et al., 2013), iteratively considering

simplified dynamics (Bry and Roy , 2011), or in a Probabilistic Roadmap where each

edge collision cost is bounded (Guibas et al., 2008). These methods approximate the

full path probability of collision from the probability of collision of the individual

states, thereby assuming that probabilities of collision are independent. In our work

the occupancy uncertainty is heavily coupled across space, thus this independence
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assumption does not hold (see Sec. 2.5 for further discussion).

While executing a plan a robot may learn new information that causes the plan

to become invalid or suboptimal, and the robot can replan a new path given this

new information. Most prior work on replanning assumes collisions can be sensed

at a distance and a primary goal is to avoid collisions (Janson et al., 2018a). Some

methods do allow for collisions and store contact locations sensed using tactile skin

on a robotic arm (Bhattacharjee et al., 2014; Killpack et al., 2016). Using a simulated

skin a fast planning architecture was demonstrated with a fast local controller that

falls back to a slower sampling-based planner when stuck in a local minimum (Park

et al., 2014). We use a similar approach for mixing planning and control, but our

method does not require tactile skin to sense precise contact points.

2.3 Problem Statement

Given a robot with configuration space C, define a workspace voxel grid of size

N × N × N as W with static workspace occupied voxels WO ⊆ W and free space

WF = W \ WO. For any configuration q ∈ C the robot occupies a subspace of

workspace, defined by the mapping R(q) : C → P(W ) where P denotes the powerset.

A collision occurs when R(q) ∩ WO 6= ∅, and is detected by joint torque feedback

(discussed in Sec. 2.4). While the planner does not have access to WO directly, the

swept volume of the previously visited configurations qivisited is known to be free and

is stored in WSV = ∪iR(qivisited) ⊆ WF .

A discretized path ξ consists of configurations qi such that ||qi+1 − qi|| < δ where

δ is set based on the desired resolution. A robot at qi attempting to follow the ith

path ξplani takes execution time Texec(ξ
plan
i ) > 0 to arrive at

M(qi, ξ
plan
i ) = qreached (2.1)

If ξplani collides then qreached ∈ ξplani is the configuration directly before the first q ∈
ξplani in collision. After a collision a new ξplani+1 may be executed.

Define an algorithm P that takes time tplani to produce ξplani , a path that must

begin at qi. P is aware of past planned paths and visited configurations Qvisited
i =

{q0, q1, ..., qi}. We refer to P as a “planner” if it plans ξplan reaching the goal, and a

“controller” if it computes a short ξplan towards the goal. A single P may choose to

act as either a planner or controller depending on context.

8



P(Qvisited
i , ξplan1 , . . . , ξplani−1 ) = (ξplani , tplani ) (2.2)

Given a robot in configuration qinit and a set of goal configurations Qgoal our

objective is to choose a P to reach a goal configuration in the least time.

minimize
P,n

n−1∑
i=0

tplani + Texec(ξ
plan
i ) (2.3)

subject to: q0 = qinit, qn ∈ Qgoal (2.4)

(ξplani , tplani ) = P(Qvisited
i , ξplan1 , . . . , ξplani−1 ) (2.5)

qi+1 = M(qi, ξ
plan
i ) (2.6)

Since planning time is part of the objective, P must choose a tradeoff between

analyzing all information to choose the best ξplani , and minimizing planning time

tplani . A controller typically achieves a small tplani , while a planner spends more time

to produce better ξplani . As ξplan are executed, P has access to more knowledge about

W , and effectively using this information is key to minimizing total time. We will not

solve Eq. 2.3 computationally, but instead design a P with desirable qualities and

justify our choices with experimental trials.

2.4 Representing Uncertain Contact Information

When a collision is detected during execution the swept volume of a set of config-

urations qicollision along the robot path within some small distance dK after collision

is assumed to contain the point of contact. While in theory the set of points on the

robot surface contains the contact point, in practice joint measurement uncertainties,

robot geometry uncertainties and approximations, and material compliance require

a larger set to guarantee encapsulation of the contact point. A set containing the

contact point is constructed Ki = ∪iR(qicollision) \WSV , the total volume of the robot

in the possible collision configurations with the known free space removed (Fig. 2.1).

In our problem collisions are detected using measured joint torque τmeas ∈ RJ ,

where J is the number of robot joints. Using a mass model of the robot the expected

joint torque due to gravity and dynamics τ exp is calculated and used to estimate

the external joint torque τ ext = τmeas − τ exp. A noise threshold τ th is set for each

joint and τ ext triggers a collision detection whenever any joint exceeds its threshold.
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Figure 2.1: A plan for the green robot (left) results in a collision with the grey
unknown obstacle. A red collision hypothesis set is added using links possibly in
collision based on measured joint torques (center). The known free space is removed
(right).

Joint i exceeding τ thi implies an external (contact) force on a link after joint i on the

kinematic chain. A set of links that must contain a contact Lcontact is constructed by

first finding the highest i where τ exti > τ thi , then adding all links downstream from

joint i to Lcontact. Only the links in Lcontact are used to create Ki.

2.4.1 Baseline: Unified Cost Grid

When provided with noisy measurements a common approach to modelling un-

certainty extends a binary occupancy map to a Unified Cost Grid (UCG), a voxel

grid where each voxel stores its likelihood of occupancy. We compute this likelihood

as the count of how many observed collisions could be explained if that voxel were

occupied. The UCG representation computes a path cost by summing the likelihood

of the voxels in the swept volume of the path.

Unfortunately, by combining all measurements into a single grid the UCG repre-

sentation loses the information that each collision was caused by at least one occupied

voxel. As we show in Section 2.6, this approach fails when entering narrow passages

as collisions near the entrance create a high cost for feasible paths. Therefore, we

construct a representation that maintains this information.

2.4.2 Collision Hypothesis Sets

Define a Collision Hypothesis Set (CHS) as a set of points in the robot workspace

containing at least one point in collision. The Ki constructed after a collision are

CHSs, since Ki ∩WO 6= ∅. However, unlike in UCG, the CHS representation never

combines Kis into a unified grid, and instead maintains a set K of all generated Ki.
Planning will require evaluating the probability of collision for a path using K.

Let the swept volume of a path ξ on the robot be Wξ ⊆ W . We define the probability

of collision of ξ with a single Ki as

10



pcollision(Wξ,Ki) =
|Wξ ∩ Ki|
|Ki|

(2.7)

Assuming there exists a single occupied voxel uniform randomly selected from Ki, this

is precisely the probability the path collides. While this will likely be an underestimate

of the true probability, it encourages exploration and further collision measurements

will help localize the contact. The probability of collision for a full path is computed

assuming independence between Kis, thus

pcollision(Wξ,K) = 1−
∏
i

(1− pcollision(Wξ,Ki)) (2.8)

This definition for collision probability captures several key features that the UCG

representation lacks. A Ki with fewer voxels represents a more precise knowledge of

where the contact occurred and thus a more precise estimate of workspace occupancy.

In addition, a path that moves the robot through an entire CHS is guaranteed to

collide, since
|Wξ∩Ki|
|Ki| = 1, representing the information that a CHS contains at least

one point in collision. A path ξ that is attempted but blocked due to a detected

collision creates a Ki that lies entirely within Wξ, so the updated collision probability

for ξ will now be 1.

2.5 Interleaving Planning and Control

To achieve our objective of reaching a goal configuration in minimal time (Eq.

2.3), we must choose an algorithm P that compute good motions ξplani in low planning

times tplani . Local controllers quickly compute locally good ξplani but may get stuck in

local minima. Global planning can escape these minima by planning a full path, but

requires significant computation time. Our environments include many undetected

obstacles and a local controller may produce many collisions before getting stuck,

thereby providing more information to the global planner without adding much total

time. Thus we use a planner initially and when stuck in cul-de-sacs, and local control

otherwise. Our full architecture is presented in Algorithm 1.

Planning: The objective of the planner is to find a path to the goal with the

minimal probability of collision. Unfortunately, as discussed in Section 2.2, previous

methods that plan over obstacle uncertainty are not applicable when using CHSs, as

these planners typically rely on a path cost definition that is purely the sum(Karaman

and Frazzoli , 2011) or maximum(Toit and Burdick , 2011) of costs of states/edges.

Figure 2.2 illustrates two problems with inferring path collision probability using the
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(a) (b)

Figure 2.2: Plans for the green arm sweep through the blue region. Red: a CHS

costs of only individual states along the path. In Fig. 2.2a the swept volume of

adjacent states overlap significantly, thus summing costs of states could significantly

overestimate the probability of collision. In Fig. 2.2b multiple states collectively in-

tersect the entirety of a CHS thus guaranteeing a collision, but each state individually

only intersects a fraction of that CHS, thus taking the maximum over all state costs

would significantly underestimate the probability of collision.

Algorithm 1: MainLoop(qcur, qgoal)

1 K ← ∅; WSV ← ∅ while qcur 6= qgoal do

2 ξ ← Planner(qcur, qgoal,K) qcur ←AttemptPath(ξ,K,WSV ) while

qcur 6= qgoal and (ξ ← Controller(qcur, qgoal,K)) 6= ∅ do

3 qcur ← AttemptPath(ξ,K,WSV )

Algorithm 2: AttemptPath(ξ,K,WSV )

1 for qi in ξ do

2 if qi causes collision then

3 K.addNew(qi, ξ, dK) break qcur ← qi WSV ← WSV ∪R(qcur)

4 K.subtract(WSV ) return qcur

To plan a path we create PathBiRRT (Alg. 3), a planner based on bi-directional

RRT (Kuffner and LaValle, 2000) that ensures the cost of the path generated is below

a specified threshold pthr. For the CHS representation the Cost function is given by

Eq. 2.8. For the baseline UCG representation, which we compare to in the results,

the Cost sums the cost of all voxels in Wξ, i.e.
∑

i |Wξ ∩ Ki|.
Ideally we desire a Connect function that ensures the cost of the entire path

to any new node is below pthr. In practice, computing this cost for every explored

node is prohibitively expensive, thus we approximate this cost as an accumulation of

branch costs computed in the Connect function (Alg. 4). When extending towards

qtarget the full path cost of the branch from qnear is calculated (Line 5). The cost from

the root to the qnew is approximated by accumulating the approximate cost to qnear
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(computed previously) and the cost of the new branch (Line 7). When using CHS

the Accumulate function is the combination of independent probabilities: 1− (1−
p1)(1 − p2). UCG accumulates by adding the costs: c1 + c2. By computing the cost

over full branches this approximation is significantly better than accumulating cost

purely based on states, however, this approximation may still over or underestimate

the true cost, as separate branches along a path may overlap in W .

PathBiRRT (Alg. 3) repeatedly calls Connect to build a tree from the start

and a tree from the goal, generating a potential path ξ when the two trees meet. ξ

may exceed pthr due to the approximation error within Connect and because ξ is

the combination of paths from two trees. The cost of ξ is checked (Line 11) and if it

exceeds pthr then the highest cost edge from ξ is pruned along with all child edges,

and planning continues.

For planning within fixed time tplan, we provide two methods for setting pthr. The

anytime APathBiRRT (Alg. 5) begins with pthr = ∞ and continues searching for

lower-cost paths until time runs out. In contrast, IPathBiRRT (Alg. 6) begins with

an optimistic pthr = cinit. In each iteration IPathBiRRT allocates a fraction ψf of the

remaining time tψ for planning with the current pthr. If a plan is not found within tψ,

pthr is increased for the next iteration, approaching pmax for CHS, or vmax for UCG.

Once a path is found, IPathBiRRT then invokes APathBiRRT for the remainder of

the planning time.

As a benchmark, we also implemented ABiRRT, which iteratively decreases a cost

threshold (as in Alg. 5), but when checking to add a new node (as in Alg. 4, Line 4-8)

only the configuration cost is considered (Cost(R(qnew),K) < pthr) and there is no

full path check (Alg. 3, Line 11). To support the claim that asymptotically optimal

planners are not practical for this problem we also compare against RRT* (Karaman

and Frazzoli , 2011), which always computes the full path cost when considering new

connections.

Local Control: The local controller samples a specified number nc of straight-

line motions of length dc uniformly from the half-sphere in C-space that reduce the

robot’s distance to the goal. From these samples, the controller greedily selects the

motion with lowest probability of collision, using Eq. 2.8. If no motion is found with

probability of collision < pc for CHS, or cost < nvoxc for UCG, the controller assumes

it is stuck (Alg. 1 Line. 2) in a cul-de-sac and invokes the planner.
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Algorithm 3: PathBiRRT(qinit, qgoal,K, pthr, t)
1 TA.init(qinit)
2 TA[qinit].approxCost ← 0
3 TB.init(qgoal)
4 TB[qgoal].approxCost ← 0
5 while timeElapsed() < t do
6 qr ← sampleConfig()
7 status, qnew = Connect(TA, qr, pthr)
8 if status 6= Trapped then
9 if Connect(TB, qnew, pthr) = Reached then

10 ξ ← path(TA, TB)
11 if Cost(Wξ,K) < pthr then
12 return ξ

13 else
14 e ← highestCostEdge(ξ)
15 if e in TA then
16 TA.prune(e)

17 else
18 TB.prune(e)

19 swap(TA, TB)

20 return ∅

Algorithm 4: Connect(T , qtarget,K, pthr)
1 qnear ← nearest(T , qtarget) Wseg ← {}
2 ξ ←interpolate(qnear, qtarget, δ)
3 for qnew in ξ do
4 Wseg ← Wseg ∪R(qnew)
5 cseg ← Cost(Wseg,K)
6 cnear ← T [qnear].approxCost
7 capprox ← Accum(cseg, cnear)
8 if collides(qnew) or 1.5emcapprox ≥ pthr then
9 if qnew = qnear then

10 return {Trapped, qnew}
11 return {Advanced, qnew}
12 T .add(qnew)
13 T [qnew].approxCost ← capprox

14 return {Reached, qnew}
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Figure 2.3: Simulated Scenarios Figure 2.4: Physical Robot environments

Algorithm 5: APathBiRRT (qinit, qgoal,K, pthr =∞)

1 ξbest ← ∅
2 while timeRemaining()>0 do
3 ξ ← PathBiRRT(qinit, qgoal, pthr timeRemaining())
4 if ξ 6= ∅ then
5 if Cost(Wξ,K) = 0 then
6 return ξ

7 pthr ← Cost(Wξ,K) - ε
8 ξbest ← ξ

9 return ξbest

Algorithm 6: IPathBiRRT (qinit, qgoal,K, cinit, cmax, ψf )
1 pthr ← cinit
2 while timeRemaining()> 0 do
3 tψ ← timeRemaining() ·ψf
4 ξ ← PathBiRRT(qs, qgoal, pthr, tψ)
5 if ξ 6= ∅ then
6 return APathBiRRT(qs, qgoal, pthr =Cost(Wξ,K))

7 α← timeElapsed()/totalTime()
8 pthr ← α · cmax + cinit

9 return ∅

2.6 Experiments and Results

To demonstrate the advantages of our representation we compared Collision Hy-

pothesis Sets (CHS) to the baseline Unified Cost Grid (UCG) in multiple environ-
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ments in simulation and on a physical robot using multiple planning approaches.

Parameters used in experiments are given in Fig. 2.5. Voxel grids were implemented

on the GPU using GpuVoxels(Hermann et al., 2014). Planners were implemented

using OMPL(Şucan et al., 2012) with modification. Code was run on a computer

with i7-7700 processor and a NVidia 1080 Ti GPU. For all planners each path was

smoothed using 100 iterations of shortcut smoothing.

Simulation Experiments simulated Victor’s right arm (a Kuka iiwa) in the en-

vironments in Fig. 2.3, shown with red Kis, grey unobserved obstacles, and black

observed obstacles. Rather than simulating joint torque, collisions were determined

when the simulated robot moved into an obstacle in the workspace. All links down-

stream of the true link in collision were used to generate a CHS. In scenario S1, the

simplest environment, the robot’s goal was to reach inside a box located on a table

with some occupancy known from a simulated depth sensor. Scenario S2 was harder

as the robot needed to move the entire arm through a narrow slot occluded from

the sensor. Scenario S3 was identical to S1 except the robot used no depth sensor

information. Each simulation trial allowed 15 minutes for the robot to reach the goal.

Physical Robot Experiments were conducted on Victor’s right arm (a Kuka

iiwa capable of sensing joint torque). A Kinect depth sensor created known obstacle

occupancy. Figure 2.4 shows the physical robot experimental setups. Each physical

trial allowed 5 minutes for the robot to reach the goal. In physical robot scenario

R1 the robot placed a pitcher inside a box with the lid occluding the side and back

walls from the Kinect. R2 involved placing a cylindrical can on a short shelf. Glare

and occlusions resulted in a sparse and noisy occupancy map from the Kinect, both

blocking a feasible path to the goal and missing portions of the top and bottom of

the shelf. To accommodate noise up 30 intersections were allowed between the robot

and the Kinect occupancy map.

In scenario R3 the robot arm moved from below to above a table. The sensed

table was artificially shifted 5 cm away from the robot, simulating localization or

sensor error. R4 tested the behavior moving through a narrow passage between two

tables. This gap was adjusted between 15.5cm to 28cm, corresponding to a clearance

of 2.5cm to 15cm for the 13cm wide robot hand. In R4 Kinect data was not used,

thus the robot only sensed obstacles through contact.

Results: Table 2.1 reports the results for each simulated scenario, comparing

CHS and UCG using the proposed APathBiRRT and IPathBiRRT planners as well

as RRT* and ABiRRT. RRT* did not reach the goal within the time limit in any
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Description Value
pc controller max collision probability 0.9

nvoxc controller max collision voxels 50
dc controller motion length 0.3 radians
nc controller number of samples 20
δ path discretization size 0.14 radians
dK dist. for Ki creation 0.05 radians

τ th torque threshold
[20, 20, 15, 5,
4, 3, 1] Nm

tplan allowed planning time per iteration 30s
N voxel grid size 200x200x200
ψf IPathBiRRT phase fraction 1/4
cinit IPathBiRRT initial cost 0.3
pmax IPathBiRRT CHS cmax 1
vmax IPathBiRRT UCG cmax 400
ε APathBiRRT improvement factor 0.0001

Figure 2.5: Experimental parameters

scenario. ABiRRT performed far worse than our proposed methods, indicating that

considering full path collision probability is superior to only per-configuration colli-

sion probability. Table 2.2 reports the results for each physical scenario, comparing

CHS and UCG using IPathBiRRT only, as this planner performed the best in simu-

lation trials. In both simulation and physical trials we observed our CHS formulation

outperforms the UCG approach in terms of computation time.

In simpler scenarios (S1, S2, R1) early collisions were navigated better by the local

controller, causing fewer lengthy planning iterations. For example in R1 our method

required invoking the global planner only once in all ten trials, leading to an average

success time of 18.6s compared to 76.6s when using a unified cost grid. In harder

scenarios (S3, R2) collisions occurred on multiple sides of narrow passages. Using

a unified cost grid, the planner and controller avoided the center of the passage as

this area has cost accumulated from multiple collisions, thus only 40% of the trials

successfully reached the goal for R2. Paths through the center do not intersect with

all voxels from any CHS, thus our approach correctly identified possible paths and

succeeded in 100% of trials in R2. Even considering only trials where UCG succeeded

our approach still reached the goal in approximately one third of the time on average.

In R3 the table obstacle created a cul-de-sac for the local controller, though there

was significant free space for the planner to conservatively avoid the table. Since plans

were able to avoid much of the CHSs, accurately modeling collision probability was
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Figure 2.6: Total time and failure % for R4, averaged over 10 trials for each clearance
with a 5 min. timeout

less important, thus the baseline method and proposed method performed similarly.

In R4 with a large gap between tables both methods found a path quickly. For both

methods, successful trials primarily invoked the local controller and rarely needed the

global planner. As the gap narrowed both methods required more time to find the

opening, however UCG took longer on average and in 60% of trials did not find the

opening within the allowed time of 5 minutes (Fig. 2.6).

2.7 Conclusions and Future Work

Most robots do not have touch-sensitive skin, and those that do may manipulate

unsensorized objects. The proposed Collision Hypothesis Sets allow reasoning about

the knowledge gained when these robots and objects come into contact with the

environment. We showed how collision hypothesis sets can be used in controllers and

planners to search for paths with minimum probability of collision. We performed

simulated and physical robot experiments and found for simpler environments our

approach takes less time to reach the goal while for more complex environments our

methods succeeds where other approaches fail.

We explained why many existing methods for planning under uncertainty cannot

be applied to contact observations and presented two planners that first approximate,

then compute the full path cost. However, the planners implemented could be made

more efficient and the resulting paths are often significantly suboptimal. Our future

work seeks to improve these results.
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Planner
S1 S2 S3

Succ. Time P.Calls Succ. Time P.Calls Succ. Time P.Calls

CHS

APathBiRRT 100% 110 4.1 100% 100 3.4 100% 220 6.5
IPathBiRRT 85% 69 3.0 100% 64 2.6 100% 180 5.3

RRT* 0% - - 0% - - 0% - -
ABiRRT 100% 78 3.5 30% 230 20 60% 200 15

UCG

APathBiRRT 100% 110 4.2 95% 120 3.9 40% 440 18
IPathBiRRT 55% 71 2.9 90% 130 3.9 60% 280 15

RRT* 0% - - 0% - - 0% - -
ABiRRT 100% 113 4.4 80% 250 11 65% 500 22

Table 2.1: Simulated Scenarios: Successes within 15 min, total time (s), and number
of planner calls averaged over 20 trials for each entry. Blue: Proposed methods.

Planner
R1 R2

Succ. Time P.Calls Plan Ctrl Succ. Time P.Calls Plan Ctrl
CHS IPathBiRRT 100% 19 1.1 3.4 15 100% 62 2.1 38 24
UCG IPathBiRRT 100% 77 2.3 57 19 40% 180 4.8 130 43

Planner
R3 R4: clearance=2.5cm

Succ. Time P.Calls Plan Ctrl Succ. Time P.Calls Plan Ctrl
CHS IPathBiRRT 100% 100 1.0 32 65 100% 57 1.2 1.5 50
UCG IPathBiRRT 100% 100 1.0 34 65 40% 140 2.5 50 82

Table 2.2: Physical Robot Experiments: Successes within 5 min., total time (s),
number of planner calls, planning time (s), and controller time (s) averaged over 10
trials.
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CHAPTER III

The Blindfolded Traveler’s Problem

The previous chapter examines the uncertainty observed from a contact measure-

ment and creates the Collision Hypothesis Set framework. The planning approaches

of Chapter II modified the RRT algorithm and search in the continuous joint-space

of the robot arm. Because the probability of collision along a path under the CHS

model does not obey the Markov property, these searches were relatively slow. Here

in Chapter III, we cast the planning problem into a Graph Search. In doing so we are

able to introduce an algorithm that perform significantly faster and is more effective

than those proposed in the previous chapter. This chapter further explores a more

informed uncertainty model based on the Manifold Particle Filter, and proposes a

method for combining the MPF and CHS beliefs.

3.1 Introduction

This chapter examines the same problem of robot motion planning in partially-

known environments where obstacles are sensed only through contact. Again, this

problem occurs quite frequently in manipulation tasks with sensing limitations such

as a narrow field of view, occlusions in the environment, lack of ambient light, or

insufficient sensor precision. For example, a robot may reach into dark confined areas

during maintenance and assembly (e.g. inspecting the insides of aircraft (Siegel et al.,

1998)) or during everyday household tasks (e.g. reaching deep into a cabinet or behind

a box (Park et al., 2014)). Here, the goal is to minimize the total time it takes for the

robot to move around obstacles sensed on-the-fly and reach a target configuration.

As before, we consider both planning and execution time, though now examine each

independently.

Consider the scenario where a robot arm is tasked with reaching into a box whose

location is uncertain (Fig. 3.1). This could be framed as a POMDP, where the
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Figure 3.1: Overview of the BTP framework for planning with contact feedback. The
robot is uncertain about location of the back wall. As it attempts to traverse edges,
it partially localizes the wall and eventually finds its way to the goal.

belief over occupancy is obtained through noisy collision measurements. However the

possible states of the POMDP include all possible arrangements of obstacles, and the

action space includes all possible motions. The general POMDP is thus intractably

large.

Instead, such planning problems may be solved by constructing a graph (Kavraki

et al., 1996), where vertices represent robot configurations and edges represent poten-

tially valid movements of the robot between these configurations. Here, the validity

of edges is unknown a priori. A natural strategy is Optimism in the Face of Uncer-

tainty (OFU) (Stentz , 1997) — assume untraversed edges are valid, plan the shortest

path and execute it. If the shortest path is indeed valid, the robot reaches the goal

optimally. Otherwise, it removes the invalid edge from the graph and replans. OFU

is effective in less-cluttered environments, where the robot finds a path to the goal

after a few collisions. However, on problems with narrow passages such as Fig. 3.1,

OFU can lead the robot down a “rabbit hole” trying paths that are not likely to be

valid.

The key insight of this chapter is that the validity of edges in the graph is corre-

lated. There are two main reasons for this correlation. First, edges overlap in swept

workspace volume. Second, objects in the world occupy multiple workspace cells.

Given a prior on edges, a robot can exploit such correlations to infer edge validities

and reach the goal quickly (Fig. 3.1). We address the following research question:

How should a robot navigate on a graph with unknown edge validites to

minimize the expected traversal cost?
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We refer to this broader problem as the Blindfolded Traveler’s Problem (BTP). We

show that this problem is NP-Complete and discuss a set of approximation-based

policies. We also propose a new policy, Collision Measure, that is both efficient to

compute and has theoretical guarantees.

We formulate robot arm planning with contact feedback as a BTP. We face an

additional challenge for realistic scenarios – the initial belief is approximate and can

be misleading. With a good initialization we show a particle filter that updates hy-

pothesis worlds from contact observations suffices. Without a good initialization, we

show an algorithm that starts with free-space and builds up a world model consistent

with observations is effective. Since both scenarios occur in practice, we propose a

Mixture of Experts framework for mixing these two belief update strategies.

In summary, this chapter makes the following contributions:

• Formulate the Blindfolded Traveler’s Problem. (Section 3.3)

• Map the planning with contact feedback task to a BTP. Since the posterior is

not specified, we propose a set of belief approximation strategies. (Section 3.4)

• Propose a set of approximation strategies to solve the BTP. (Section 3.5)

• Provide empirical evaluation of different strategies and belief approximations

on simulated and real robot arm BTP instances. (Section 3.6)

We evaluate all strategies on Victor, our robot with two 7 DOF arms, in planning

scenarios in simulation, each with three varying levels of difficulty (by adding error

in prior). We also evaluate strategies with practical computation times on a live

version of Victor. We find that the Collision Measure strategy using a Mixture of

Experts belief tends to outperform all other baselines by planning consistently low

cost paths with consistently low computation time. Furthermore, we find using the

BTP framework significantly outperforms a baseline strategy used in planning with

contact feedback.

3.2 Related Work

We examine planning under contact sensing uncertainty which leads to a num-

ber of challenges. While some approaches consider tactile skin (Bhattacharjee et al.,

2014), with only torque feedback contact observations cannot precisely localize col-

lision points. One approach is to use non-parametric particle filters, however, they
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encounter problems with contact measurements (Saund et al., 2017). The Mani-

fold Particle Filter overcomes this by sampling from different proposal distributions

depending if contact/no contact (Klingensmith et al., 2016a), though this method

requires an accurate prior over obstacles. Without a prior over obstacles we use the

Collision Hypothesis Set belief, which we have previously employed in search using

RRT (Saund and Berenson, 2018).

Our problem is closely related to that of real-time motion planning on roadmaps

(Kavraki et al., 1996). Roadmaps, which are graphs in configuration space, are effi-

cient because they can be reused across planning iterations. In robot motion planning,

edge evaluation dominates computational complexity (Hauser , 2015), therefore the

key to minimizing search times is laziness (Bohlin and Kavraki , 2000; Cohen et al.,

2015). LazySP (Dellin and Srinivasa, 2016), shown to be optimally lazy (Haghtalab

et al., 2018), optimistically plans the shortest path and checks edges sequentially till

an infeasible edge is encountered. Priors on edge validities can be further exploited to

minimize edge evaluation (Choudhury et al., 2016; Mandalika et al., 2019; Narayanan

and Likhachev , 2017). These problems can be further mapped to Bayesian active

learning (Tong and Koller , 2001; Golovin et al., 2010; Chen et al., 2015) to compute

policies that actively choose edges to evaluate to minimize uncertainty about which

path is feasible (Choudhury et al., 2018, 2017). An alternate formulation is online

shortest path routing (Awerbuch and Kleinberg , 2004; György et al., 2007; Talebi

et al., 2017) which is a particular instance of combinatorial bandits (Cesa-Bianchi

and Lugosi , 2012). However, unlike our problem, these methods have full flexibility

to telelport to and evaluate any edge.

Our work falls under the domain of planning under sensing uncertainty. D* (Stentz ,

1997) and variants (Koenig and Likhachev , 2002; Ferguson and Stentz , 2007) typi-

cally replan optimistically and re-using the search graph. An alternative is to cast

the problem in a Bayesian paradigm using an occupancy map (Richter et al., 2018).

However, such methods usually plan to short horizons. Since this problem arises

from the mobile robot community, the focus is primarily robot safety (Janson et al.,

2018b). For our problem, the robot is able to collide safely and we seek to minimize

the travel cost.

The BTP problem is closely related to the Canadian Traveler’s Problem (CTP) (Pa-

padimitriou and Yannakakis , 1991b) where neighboring edge costs are revealed when

an agent visits a vertex. DAGs can be solved exactly via DP (Nikolova and Karger ,

2008) but the general problem is PSPACE-complete (Fried et al., 2013). Typically

CTPs are solved using heuristics (Eyerich et al., 2010) adopted from probabilistic
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planning (Yoon et al., 2008) or using Monte-carlo Tree Search (Gelly and Silver ,

2007; Guez et al., 2012). CTP can also be cast in a Bayesian framework (Lim et al.,

2017) and solved near-optimally using informative path planning techniques (Lim

et al., 2016, 2015). While we evaluate some of these strategies for our robot arm

planning, others are prohibitively expensive due to expensive collision checking and

posterior update. We therefore adapt the Collision Measure (Choudhury et al., 2016)

as a computationally efficient strategy for the CTP/BTP.

3.3 Problem Statement

We propose the Blindfolded Traveler’s Problem as a graph search problem to

model the contact feedback planning problem. In a BTP the traveler traverses a graph

attempting to reach a goal. While traversing an edge the traveler may encounter a

blockage and be forced to retrace back to the previous node and plan an alternate

route. While the traveler only directly senses the validity of the attempted edge,

blockages may be correlated, thus providing implicit information about the validity

of other edges in the graph.

3.3.1 Blindfolded Traveler’s Problem

Let G = (V , E ,W) be an explicit directed graph where V denotes the set of vertices,

E denotes the set of edges and W : E → R≥0 denotes the weight of each edge. For

each edge e ∈ E , let x(e) = {0, 1} denote if the edge is invalid (0) or valid (1). Note

that x(e) is latent. Additionally, let η(e) ∈ [0, 1] be the latent blockage of an edge.

The blockage is the fraction of an edge that can be traversed before encountering an

obstruction.

A traveler located at vertex v1 may attempt to traverse any edge e1,2 connecting

a neighboring vertex v2. An attempt (v1, e1,2) is mapped to a resultant vertex and

traversal cost specified by the following function:

Γ(v1, e1,2, x, η) =

(v2, w(e1,2)) x(e) = 1

(v1, 2η(e1,2)w(e1,2)) x(e) = 0
(3.1)

Traversing a valid edge moves the traveler to the new vertex v2 with a traversal

cost equal to the weight of the edge we1,2 . Traversing an invalid edge returns the

traveler to the original vertex v1 with a traversal cost equal to the distance travelled

to the blocked point and back, 2η(e1,2)w(e1,2).
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Figure 3.2: Blindfolded Traveler’s Problem

The traveler has a prior P on the joint probability P (x, η). When attempting to

traverse edge e, the traveler receives the observation o = (x(e), η(e)). The traveler

maintains a history of all observations, i.e. ψT = {ot}Tt=1. The Blindfolded Traveler’s

Problem can be fully specified by the tuple 〈G,P , vs, vg〉 where vs, vg ∈ V are the

initial and goal vertices.

The solution to the BTP can be represented as a policy tree π, where the nodes

specify an edge e that the traveler attempts to traverse. Each branch is labelled by

an observation oe. The root node of the tree is an edge emanating from start vertex

vs. To follow the policy, the traveler attempts to traverse the edge e and takes the

branch matching the observation oe to go to a next edge e′. The procedure repeats

until the traveler reaches a terminal node which is always the edge evg ,vg , i.e., a loop

at the goal vertex.

The cost of a policy for a given (x, η), c(π(x, η)) is the sum of traversal costs. The

goal of the traveler is to minimize the expected cost

min
π

E(x,η)∼P [c(π(x, η))] (3.2)

We show that BTP is NP-complete. We do so by constructing a mapping between

any Optimal Decision Tree (ODT) problem, where the goal is to find a hypothesis

with minimum tests, to an equivalent BTP. Since ODT is NP-Complete, so is BTP.

For the proof and further details refer to the appendix A.2.

3.3.2 Contact-based Planning Problem as an instance of BTP

We now examine the problem of a robot arm planning with unknown workspace

obstacles sensed only through contact and map this problem to an instance of BTP.

25



The robot’s configuration space C is composed of free space CF and obstacles

Cobs = C \ CF . The robot operates in a workspace W containing workspace obstacles

Wobs. A robot configuration q ∈ C occupies a workspace volume R(q) ⊂ W . We say

q is in collision if R(q) ∩Wobs 6= ∅.
The graph G is a roadmap where vertices V are configurations and edges E :

[0, 1] → C are paths through C connecting vertices, with w(e) = ||e(0)− e(1)||. An

edge therefore represents the swept volume We = ∪d∈[0,1] R(e(d)). The prior P is a

probability density over Wobs. This is mapped to C via R(·) thus inducing a joint

probability P (x, η).

As in the previous chapter, we consider a robot that senses obstacles indirectly

though collision using measured joint torque τmeas ∈ RJ , where J is the number

of robot joints. Using a mass model of the robot the expected joint torque due

to gravity and dynamics τ exp is calculated and used to estimate the external joint

torque τ ext = τmeas− τ exp. A noise threshold τ th is set for each joint and τ ext triggers

a collision observation at qcol whenever any joint exceeds its threshold. A successful

edge traversal results in o = (1, 1), while a collision yields o = (0, η) where e(η) = qcol.

Furthermore, as a slight augmentation of BTP, a collision yields additional in-

formation. Joint i exceeding τ thi implies an external (contact) force on a link after

joint i on the kinematic chain. A set of links Lcontact that must contain a contact is

constructed by first finding the largest i where τ exti > τ thi , then adding all links down-

stream from joint i to Lcontact. Define R(q,L) ⊆ R(q) as the workspace occupancy

for only links L. A traveler may use the knowledge that an object must be in contact

with R(q,Lcontact), as opposed to anywhere on R(q).

The BTP for contact planning has a few defining characteristics that warrant at-

tention. First, the edges of this BTP are highly correlated, because a single workspace

obstacle can block multiple C-space edges. Hence even an independent prior over

workspace occupancy translates to correlation amongst edges. The robot exploits

this to gain information about untraversed edges. Second, it’s unclear how one ob-

tains priors. A uniform random distribution is certainly not realistic. A finite dataset

of worlds has realizability issues on account of continuous observations. Designing

parametric distributions that capture all likely worlds is difficult. Finally, a manually-

specified prior might be inaccurate. How should the robot detect and compensate for

this in a principled manner? We propose solutions that deal with these issues in the

next section.
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3.4 Belief Representations for Contact-based Planning

An agent maintains a belief over workspace occupancy Wobs, which we refer to as a

world φ ∈ Φ and represent it using a voxel grid. The belief at timestep t is represented

as bt(φ). Since each voxel can be either occupied or free, the set of worlds is Φ =

{0, 1}N where N is the number of voxels, thus explicitly enumerating all possible

worlds is infeasible. We follow two approaches for maintaining the belief. The first is

a non-parametric particle filter where a set of candidate hypotheses are maintained

and possibly ruled out. The second is an approach that adds new hypotheses that are

consistent with measurements. We also motivate and discuss mixing these methods.

3.4.1 Approach 1: Manifold Particle Filter (MPF)

A particle filter is a non-parametric Bayes filter that represents belief bt(φ) as

a finite set of possible candidate worlds Φt = {φ1
t , φ

2
t , . . . } with associated weights

{µ1
t , µ

2
t , . . . }. In this paper, the particles model objects with known geometry but

with varying positions. Since in the BTP objects are stationary, the process model is

static, and particles are only updated due to the measurement model, thus we only

update the particle weights and do not resample.

A known issue with particle filters is poor performance when the proposal dis-

tribution does not match the target distribution. A conventional particle filter per-

forms measurement updates via importance sampling: sampling from φit−1 ∼ bt−1

and weighing by µit = P (ot|φit). In the case of a highly discriminative measurement

such as a contact, the target distribution represents a thin manifold of possible object

configurations which does not match the proposal bt−1, causing particle starvation.

We therefore adopt the strategy used in the Manifold Particle Filter (MPF) (Klin-

gensmith et al., 2016a), depicted in Fig. 3.3 and detailed in Algorithm 7. For robot

motions through free space where no collision is observed the MPF updates using

importance sampling as in a conventional particle filter (Line 6). With our static

process model this is equivalent to eliminating particles inconsistent with the new

known free space.

When a collision is observed the MPF instead uses the contact manifold as the

proposal distribution, sampling particles from obstacle configurations in contact with

the robot arm (Line 10). The importance weights are then calculated using P (φit|bit−1).

bit−1 is approximated by applying a Gaussian kernel to Φt−1, called a Kernel Density

Estimate. We implement the Implicit Manifold Particle Filter (Klingensmith et al.,

2016a) which approximates the proposal distribution by projecting the prior particles

27



Algorithm 7: Manifold Particle Filter

input : particles Φt−1, e, ot = (xt, ηt), Lcontact
output: particles Φt

1 Φt ← ∅
2 for φit−1 ∈ Φt−1 do
3 for d ∈ [0, ηt) do
4 q = e(d)
5 φit ← φit−1

6 µit ← P (R(q) ∩Wobs = ∅|φt)µit−1

7 if xt = 0 then
8 WCM ← R(e(ηt),Lcontact))
9 φit ← Project (φit−1,WCM)

10 µit ← KernelDensityEstimate
(Φt−1, φ

i
t)

Figure 3.3: Manifold Particle Filter: The initial particles Φ0 model configurations of
the true obstacle before the robot moves (top). A collision during a motion causes
particles to be resampled on the contact manifold (middle). Subsequent free space
motions sweep through and eliminate some particles (bottom).

onto the contact manifold. Though computationally efficient, this projection does

introduce significant bias, as the previous estimate appears both in the sampling and

the re-weighting. In our implementation we translate each particle the minimum dis-

tance so that it overlaps with the robot in the collision configuration. This choice of

projection can generate new particles that are inconsistent with past contact obser-

vations. While a more sophisticated projection operation is of interest, it is beyond

the scope of this work.

MPF performs well when given an accurate initialization b0, but for robots in the

real world it is often unrealistic to assume the distribution over obstacles is known

accurately. One such instance is when b0 clusters the correct object far from the

correct position. Another common and more difficult instance is when the particles

model the incorrect object geometry, so no particle is capable of representing the true

world.

3.4.2 Approach 2: Collision Hypothesis Sets (CHS)

To overcome the reliance on an accurate prior we can adopt the Collision Hypoth-

esis Set (CHS) from Chapter II (Saund and Berenson, 2018) belief. To briefly review,

a single CHS κi ∈ W is the complete set of voxels that could explain observed collision
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Algorithm 8: Collision Hypothesis Set

input : CHSs K, Known Freespace WF ,
e, ot = (xt, ηt),Lcontact

output: K,WF

1 for d ∈ [0, ηt) do
2 q = e(d)
3 WF ← WF ∪R(q)

4 if xt = 0 then
5 K.append(R(e(η),Lcontact))
6 for κi ∈ K do
7 κi ← κi \WF

Figure 3.4: CHS: The robot initially plans a motion optimistic about unknown space
(top). A motion sweeps out free space (blue) and a collision generates a CHS (middle).
Future free space motion sweeps out more free space, potentially shrinking CHSs
(bottom).

i. The CHS belief builds up a set K = {κ1, κ2, . . . } to explain all measurements.

Fig. 3.4 depicts the CHS update described in Algorithm 8. As the robot moves

without collision, the swept volume of the motion is marked as known free space in

the voxel grid (Line 3). When a collision is encountered during robot motion a CHS

is added containing voxels of the links possibly in collision (Line 5). The known free

space is then removed from all CHSs (Line 7).

K induce a belief P (x) as follows:

P (x(e) = 0|κi) =
|We ∩ κi|
|κi|

effect of single CHS (3.3)

P (x(e) = 1|K) =
∏
i

1− P (x(e) = 0|κi) effect of all CHSs (3.4)

where (3.3) captures the optimistic assumption that each κ generates exactly one

occupied voxel, and (3.4) comes from the assumption that each κ is independent.

Note that the CHS method never mark a valid edge as invalid. P (x(e) = 1) = 0 (i.e.

e is marked invalid) only if We completely contains a κ. By construction a κ must

contain an occupied voxel. Additionally note that when an invalid edge is attempted,

the new κ created will cause P (x(e) = 1) = 0.

The CHS method is optimistic about free space. Sampling φ ∼ K yields worlds

with only a few occupied voxels, not representative of realistic scenarios, though as a

single voxel still blocks an edge the edge validities x may still match realistic scenarios.
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However, while a particle filter with good initialization begins with a good estimate

of P (x), it may take many collisions to build up K sufficiently.

3.4.2.1 Approach 3: Mixture of Experts

We would like to benefit from an MPF prior, but also recover in the case of a

bad initialization. In real world examples, it is unknown if an initial b0 for the MPF

is accurate a priori. Intuitively, online adaptation can be achieved by comparing

particles Φt to Φ0. If measurement updates cause particles to congregate in regions

predicted by particles Φ0 then the prior likely provides a reasonable model of the

world. If instead particles update to unlikely regions or disappear entirely the prior

was likely not accurate, and we would like to fall back to the CHS belief.

To achieve this behavior we mix the CHS belief bCHSt and MPF belief bMPF
t using

weights βt = (βMPF
t , βCHSt ) to get the following:

bt(φ) =
βMPF
t bMPF

t (φ) + βCHSt bCHSt (φ)

βMPF
t + βCHSt

(3.5)

To set βMPF
t , we consider three terms of interest: Φt is the current set of particles in

the MPF, bMPF
0 is the initial MPF belief before any observations, and bU is a uniform

belief over a support set of volume V . The weights are set as:

βCHSt = 1 (3.6)

βMPF
t = Eφ∼bMPF

t

[P (φ|bMPF
0 )

P (φ|bU)

]
(3.7)

=
∑
φit∈Φt

µit
P (φit|bMPF

0 )

P (φit|bU)
=
∑
φit∈Φt

µit
bMPF

0 (φit)

1/V
= V

∑
φit∈Φt

µitb
MPF
0 (φit) (3.8)

where V is a tuning parameter. In other words, we set the weight of the MPF belief

βMPF
t by iterating over all particles and doing a weighted sum of the likelihood of the

particle under the original MPF belief bMPF
0 . The weight βCHSt is set to be constant.

The rationale for setting βMPF
t in this way is to measure how much the current

MPF belief bMPF
t has deviated from the original belief bMPF

0 . A large deviation

indicates that the prior was not a good estimate and we should instead trust CHS.

When the MPF prior bMPF
0 is accurate, there are at least some particles that have

both a high weight µit and high likelihood under the original prior bMPF
0 (φit). Hence

βMPF
t is high. The deviation w.r.t bMPF

0 is measured relative to a uniform distribution

with volume V .
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When the prior is inaccurate, particles may still have a high weight µit. However

bMPF
0 (φit) will be small since the particles have moved significantly, thus resulting in

a small βMPF
t .

3.5 Strategies for Solving the BTP

Since we established that BTP is NP-complete (Appendix A.2.2), we explore a

number of efficient approximation strategies to solve the problem, by drawing from

heuristics used in the related Canadian Traveler’s Problem (CTP) (Eyerich et al.,

2010) (Section 3.5.2). We also propose a new heuristic (Section 3.5.1) that (to the

best of our knowledge) has not been applied to a CTP.

3.5.1 Collision Measure (CM)

This heuristic balances exploration (assuming unexplored edges are free) with

exploitation (penalizing edges with low validity likelihoods). The agent is at a vertex

vt and decides which edge et from the set of outgoing edges N (vt) to traverse as

follows:
Ĝ = (V , E , w(e)− α logP (x(e) = 1|ψt))
et =

{
e ∈ N (vt)

∣∣∣ e ∈ ShortestPath(Ĝ, vt, vg))
} (3.9)

Here Ĝ is an optimistic graph created by removing all edges that are invalid with

probability 1 given observation history ψt. Further, the weights are penalized by

log-probability. Log-probability is chosen because for a path ξ, the log-probability is

additive over edges assuming independence, i.e., logP (x(ξ)) =
∑

e∈ξ logP (x(e)). A

known blocked edge (P (x(e) = 1|ψ) = 0) yields a weight of ∞, and a known free

edge (P (x(e) = 1|ψ) = 1) yields w(e). At each iteration the CM strategy finds the

shortest path over Ĝ and attempts the first edge.

We provide the outline of theoretical justification for using this heuristic, (see

supplementary material (Saund et al., 2019) for a detailed discussion). We first map

BTP to a Bayesian search (Ross , 2014). In Bayesian search, an agent repeatedly

inspects a series of n boxes until an item is found. The goal is to minimize the

expected cost of searching the box. A greedy policy selects the box with the largest

ratio of probability of containing an object over the cost of searching the box pi
ci

.

Dor et al. (1998)(Theorem 4.1) proved that a greedy policy has cost at most 4 times

optimal cost.

We modify BTP as follows - the agent picks a path, travels along it till an obstacle
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is encountered, backtracks to the start and tries another path. This is a Bayesian

search problem. A greedy policy is equivalent to a more general notion of the collision

measure policy that can solve the following optimization

et =

{
e ∈ N (vt)

∣∣∣∣ e ∈ arg min
ξ

w(ξ)

P (x(ξ) = 1|ψt)

}
(3.10)

This has a bound of 4 w.r.t the optimal policy in the modified problem, and a bound

of 8 w.r.t the original BTP problem.

The optimization in (3.10) is intractable as P (x(ξ) = 1) is not additive. However

we can instead solve arg minξ w(ξ) − α logP (x(ξ) = 1|ψt) where the cost function

is additive (as log-probabilities are additive) and decomposes nicely. We show in

supplementary material (Saund et al., 2019) that this is a suitable approximation of

the near-optimal policy. Furthermore, Collision Measure is complete on the modified

BTP even when using the CHS approximation of the belief. Using CHS there are

finite ξ, each attempt either reaches a goal or marks an edge as invalid, and no valid

edge will ever be eliminated.

3.5.2 Baselines

To benchmark our proposed Collision Measure strategy we consider three cate-

gories of strategies commonly used in POMDPs – approaches that approximate the

optimal expected cost-to-go of an action, also referred to as Q-value, with heuris-

tics, approaches that use simulation to evaluate actions, and approaches that plan to

gather information. For more details, refer to the Appendix A.3.

Optimism in the Face of Uncertainty (OFU) (Brafman and Tennen-

holtz , 2002): Find the shortest path on the optimistic graph and move along the

edge on it.

Thompson Sampling (TS) (Littman et al., 1995): Sample a world from the

current belief, find the shortest path in that world, and move along the edge on it.

Qmdp (Littman et al., 1995): Given current belief, move along the edge with

the least expected cost-to-go assuming the world is revealed at the next timestep.

Most Common Best Edge (MCBE): Given the current belief, move along the

edge that has the highest probability of belonging to a shortest path.

Optimistic Rollout (ORO) (Eyerich et al., 2010): Sample a world from the

current belief, simulate moving along an edge and rollout with an optimistic policy.

Move along the edge with best Q-value.

Upper Confidence Tree (UCT) (Gelly and Silver , 2007): Conduct a
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Figure 3.5: Pitfalls for various strategies for a 2D BTP problems.

Monte-Carlo Tree Search (Kocsis and Szepesvári , 2006) where nodes are belief states

and actions are edges to move along. The value of each belief is averaged over succes-

sors. To select actions for expansion during search, Upper Confidence Bound (UCB)

is used.

Interleaving Planning and Control (Chapter II): Alternate between a global

RRT planner and greedy local controller to plan a path to the goal through C with

the least probability of collision. Note this is a strategy for the planning with contact

feedback problem, but does not directly map to a BTP.

3.5.3 Pitfalls for Heuristic Strategies

Since all strategies considered are heuristics, it is important to recognize the pit-

falls that they face. We illustrate these in Fig. 3.5. OFU is easily tricked into explor-

ing cul-de-sacs that do not lead to the goal (Fig. 3.5(a)). A Bayes-aware heuristic

would be able to predict the cul-de-saac and backtrack earlier. ORO offers significant

improvement over OFU as it simulates executing OFU. However simply increasing

the density of the grid yields a BTP where all neighbors of vs fall into a cul-de-sac

(Fig. 3.5(b)). ORO is not able to discover the non-myopic sequence of actions.

Qmdp and MCBE avoid such optimistic pitfalls. However they rely on uncertainty

disappearing after performing the first action. This can lead to infinite loops as shown

in Fig. 3.5(c). The belief is such that the solid edge is known to be feasible while only

one of dotted edges is feasible. When the agent is at v1, it wishes to move to v2 and

vice-versa.

CM is also susceptible to pitfalls because it treats P (x) independently. Fig. 3.5(d)

shows an example where the solid edge is feasible while only one of the dotted edges

is feasible. The only feasible path is the longer path with weight w2. CM will choose

the lower path as long as 2w1 − α log 0.5 < w2.

However, of the four traps, the CM trap is the least concerning. In Fig. 3.5(d),
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Figure 3.6: Refrigerator - Victor moving to place an object inside a refrigerator.

the suboptimality of CM is at most 4w1+w2

w2
which is small as w2 � w1. Moreover,

an appropriate α would lead to the optimal answer. This suggest a sweep over α

parameter in practice would help prevent such pitfalls.

3.6 Experiments

We performed experiments on simulated and real worlds for the “Victor” robot’s

right arm, a KUKA iiwa 7DOF arm that provides joint torque feedback.

Implementation Details: W is represented by a 200x200x200 voxel grid imple-

mented on the GPU using GPUVoxels (Hermann et al., 2014). Computing P (x(e)|ψ)

involves the expensive computation of swept volumes We, approximated by discretiz-

ing the configurations with a distance of 0.02 rad. For efficiency we lazily compute

and cache We.

We constructed G in the R7 configuration space corresponding to the right arm

of the Victor robot with 10000 vertices generated from the 7D Halton sequence and

with edges connecting vertices within 1.8 rad, yielding |E| = 259146. All strategies

considered in Section 3.5 involve repeated shortest path queries over subgraphs of

G with modified edge weights. Although any best-first search method is sufficient,

we performed all shortest path queries using LazySP (Dellin and Srinivasa, 2016)

to minimize the number of expensive edge-evaluation operations. All trials were

conducted on an i7-7700K with a NVidia-1080Ti GPU.

Scenarios: We considered 2 real robot scenarios - Refrigerator and RealTable.

In Refrigerator, Victor must reach into a refrigerator from behind (Fig. 3.6). In
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Figure 3.7: RealTable - Victor moving from below to above a table.

RealTable, Victor must move from below the table to above (Fig. 3.7). We also

consider 2 simulated robot scenarios (Fig. 3.8) - Bookshelf and Box. In Box, Vic-

tor must reach into a box on a table where the back of the box unknown (which is a

typical scenario due to sensor occlusion). In Bookshelf, Victor must reach into a

bookshelf at a height above it.

We consider CHS, MPF with 100 particles, and MoE models of the belief. The

MPF requires an initial belief bMPF
0 , which can have drastic effects on the behavior

of strategies.

We consider three levels of difficulties based on how the prior bMPF
0 is chosen.

• Easy: true unknown obstacles with offset ∼ N (0, 0.1)

• Medium: true unknown obstacles with offset ∼ N (0.1, 0.4)

• Hard: a chair in the corner, with no knowledge of the relevant obstacles

In the real robot scenarios the Easy and Medium particle priors were manually

generated, approximated the shape of the true obstacle. In the Refrigerator

scenario Wobs is populated using a Kinect sensor mounted on Victor’s head. In the

RealTable scenario Victor is wearing a blindfold.

We compare across the three beliefs proposed in Section 3.4 and all strategies from

Section 3.5, except UCT which was not tested due to excessive computational time.
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Figure 3.8: Simulation scenarios. Here CM is used in all scenarios. Top left: Easy
setting of Box using CHS. Top right: Easy setting of Box using MPF. Bottom left:
Hard setting of Box using MoE. Bottom right: Hard setting of Bookshelf using
CHS.

Figure 3.9: Results of applying various belief strategies and policies to the
Bookshelf BTP. Our proposed MoE+CM is consistently fast and solves the BTP
with low cost.

For the stochastic TS strategy we average across 10 trials. We test our proposed CM

with α = 1 and α = 10. We also compare against the (non-BTP) baseline proposed
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in (Saund and Berenson, 2018) which interleaves an RRT with a local controller to

find low cost paths through C.
Results: Select results for the Bookshelf scenario are shown in Fig. 3.9 with

full results for all scenarios shown in (Saund et al., 2019). For the non-BTP baseline

(Saund and Berenson, 2018) applied to the Bookshelf scenario we observe only 2

out of 20 trials succeeded within a 15 minute time limit.

Constraining motion to a roadmap yields a manageable action space and depth

for the search for the strategies proposed. Furthermore, the roadmap allows reuse of

the computationally expensive quantity P (x(e)|ψ) within a single ShortestPath

query, and reuse of the edge swept volume We between queries. Compared to the

previous baseline (Saund and Berenson, 2018), we observe a significant improvement

using the BTP framework.

Furthermore, we observe three key takeaways from the experiments.

1. CM performs well. CM consistently outperforms OFU, providing a lower cost

policy in 19/24 experiments across scenarios, beliefs, and prior hardness. For our

proposed MoE belief, CM outperforms OFU in 11/11 experiments, on average

yielding 37% the cost. Compared to MCBE, CM yields a lower cost in 17/26

trials. In addition, averaged across all trials the planning time of CM is 15s,

while MCBE is 217s.

2. MPF with a good prior performs well but breaks down when poorly initialized.

MPF with the Easy prior outperforms CHS in 21/22 trials across all strategies

and scenarios. MPF with the Hard prior only outperforms CHS in 1/22 trials,

causing strategies to fail in half of trials.

3. MoE costs are approximately the minimum of MPF and CHS when using CM.

3.7 Conclusions

This chapter proposed the Blindfolded Traveler’s Problem as a class of problems in

planning under uncertainty. We showed that contact-based planning is an instance of

BTP. We examined various strategies for approximating the belief over the workspace

obstacles based on contact feedback and argue for a Mixture of Experts that work

well with and without correct initialization. We also examined various policies for

approximately solving the BTP and propose a new policy, Collision Measure, that is

both efficient and has theoretical guarantees.
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CHAPTER IV

Plausible Shape Sampling

The previous chapter introduced the Blindfolded Traveler’s Problem and cast

planning and replanning with contact uncertainty into this BTP framework. Many

algorithms were examined for solving these BTP problems and a new heuristic was

proposed. However a key limitation of Chapter III was the assumption a the shape

of all obstacles was known and a prior was given specifying uncertainty of the object

pose. Without such a prior, the previously proposed approaches for addressing BTP

revert to the CHS uncertainty model. This chapter explores how to create a richer

prior over obstacles observed in the world, capable of predicting diverse shapes from

ambiguous depth images. Chapter V connects this richer prior to robot contact

information.

4.1 Introduction

You look into a cabinet and see a coffee mug on the shelf. Though you only observe

the front of the shell you have a rich prior of shapes and so can infer the occluded

structure of the mug. Now suppose the handle is facing towards the back of the

shelf, hidden from view. You may imagine scenarios where the handle is on the left,

on the right, straight back, or perhaps there no handle at all. We propose a neural

network architecture for generating these diverse samples over plausible completed

shapes (Fig. 4.1).

More specifically, we generate a set of possible 3D shapes from a 2.5D depth image,

such as that provided by a Kinect sensor. There is inherent ambiguity in this process

as it is impossible to know the true occupancy of occluded space. We thus seek an

algorithm which produces a set of plausible 3D shape estimates from the observed

data.
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Broadly, researchers have attempted two approaches when inferring 3D structure

from a 2.5D depth image. Shape matching optimizes a model pose, potentially with

uncertainty (Desingh et al., 2016; Peretroukhin et al., 2020), thus requiring meshes

of any potential object, limiting their ability to generalize. Learned methods, such

as Variational Auto Encoders (VAE) (Wu et al., 2018), only require meshes during

training and generate visibly pleasing shapes, but are optimized and evaluated on a

single completion without consideration of other plausible completions.

Rather than operating on a single maximal-likelihood guess of the world, many

robotics algorithms model and plan over a belief over worlds, thus we propose the

Plausible Shape Sampling Network PSSNet, capable of generating diverse shape com-

pletions when multiple plausible shapes could fit a depth image. The key insight of

this chapter is a restructuring of an Variational Auto Encoder to incorporate human-

defined shape features during training. We use a normalizing flow to map the pose

and size of a bounding box into a portion of the latent space of the VAE. During infer-

ence the network estimates a distribution over bounding boxes from which a specific

box is sampled and used for reconstruction.

Evaluating the quality of our network presents a dilemma: if our network produces

a shape different from the ground truth, how do we decide if that shape is plausible?

We propose a classical non-learning method for generating plausible completions for

a specific test dataset.

This chapter makes the following contributions:

1. A method to generate plausible completions for an evaluation dataset

2. Metrics to evaluate plausible diversity of a black-box shape completer

3. PSSNet: A network for sampling diverse and plausible shape completions

To validate our method, we perform experiments using mugs from shapenet (Chang

et al., 2015) and all YCB objects (Calli et al., 2017) which show that for non-

ambiguous completions our methods performs comparably to other recently-proposed

shape completion methods. However, when there is ambiguity, baselines produce sim-

ilar and poor quality completions while our method produces diverse yet plausible

samples.

4.2 Related Work

Shape Matching: Robotics has studied the problem of inferring 3D structure

from RGB and depth camera images for decades. In the shape matching variant the
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Figure 4.1: Our proposed PSSNet applied to a noisy segmented Kinect depth image
of a mug produces multiple plausible reconstructions

pose or configuration of a target shape is estimated from observations. A classic but

powerful non-learning approach uses the Iterative Closest Point (ICP) algorithm to

align a mesh or pointcloud of a target object with the observed pointcloud (Besl and

McKay , 1992; Yang et al., 2020), with some newer methods accomplishing this using

neural networks (Narayanan and Likhachev , 2016; Deng et al., 2019; Hodan et al.,

2020).

Shape matching has inherent uncertainty due to both sensor noise and symme-

tries or repeated structures in the shapes, thus many robotics approaches predict a

distribution of possible configurations for the target, often using particle filters (Haus-

man et al., 2015; Koval et al., 2015; Desingh et al., 2019a, 2016, 2019b; Liu et al.,

2015; Chen et al., 2017). Particle filters require an observation model that assigns a

likelihood to the observed depth image given the proposed shape. Researchers have

hand-crafted likelihood models using sum of squared pixel depth distances (Desingh

et al., 2016), outlier rejection (Narayanan and Likhachev , 2016), gaussian per-pixel

error (Wüthrich et al., 2013), and signed distance (Schmidt et al., 2014).

Shape matching requires known meshes for objects, limiting the applicability in

an unstructured novel world. Our work uses shape matching to construct an evalua-

tion dataset of plausible shapes and configurations for each given depth image. Our

construction uses ICP followed by an outlier rejection observation model to gener-

ate plausible particles. We use the plausible particles to evaluate how well PSSNet

captures the uncertainty inherent in constructing a 3D model from a depth image.

PSSNet does not perform shape matching, nor require models outside of the training

process.

Shape Completion: In shape completion or shape reconstruction the 3D struc-

ture is directly predicted from the camera observation without fitting specific shapes,

resolving the inherent ambiguity of unobserved space using a prior learned from a

dataset. Shape datasets such as shapenet (Chang et al., 2015) and YCB (Calli et al.,

2017) enable learning on sufficient examples to generate visually compelling results.

Recently, dozens of papers have proposed neural networks to perform shape com-

pletion. The most common architecture for shape completion learns an encoder to
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a feature space followed by a decoder to the shape output (Zhirong Wu et al., 2015;

Choy et al., 2016; Girdhar et al., 2016; Wu et al., 2018, 2017; Michalkiewicz et al.,

2020; Wen et al., 2019; Xie et al., 2019; Fan et al., 2017; Yu et al., 2020; Yang et al.,

2018; Wu et al., 2016). Though mostly addressed as a complete problem by itself,

shape completion has been used as a component in robotics tasks (Price et al., 2019).

In different variants the encoder may accept voxelgrids (Zhirong Wu et al., 2015; Wu

et al., 2017; Choy et al., 2016; Yang et al., 2018; Dai et al., 2017), images (Girdhar

et al., 2016; Xie et al., 2019), or point clouds (Yuan et al., 2018a; Fan et al., 2017).

Similarly the decoder may produce voxelgrids (Zhirong Wu et al., 2015; Wu et al.,

2017; Choy et al., 2016; Yang et al., 2018; Dai et al., 2017; Xie et al., 2019), point

clouds (Yuan et al., 2018a; Fan et al., 2017), meshes (Wen et al., 2019) or octrees

(Riegler et al., 2017). Our proposed network encodes to and from voxelgrids, however

we expect out contributions to be applicable to other approaches either directly or by

converting between representations (e.g. learning RGB to depth (Wu et al., 2018)).

In these networks a reconstruction loss such as voxel-independent binary crossen-

tropy guides the optimizer (Zhirong Wu et al., 2015; Choy et al., 2016; Dai et al., 2017;

Wu et al., 2016), which leads to averaging over possible shapes when there is am-

biguity, producing “blurry” completions. Generative Adversarial Networks (GANs)

(Goodfellow et al., 2014) penalize this averaging and are used to produce natural-

looking 3D reconstructions (Wu et al., 2016, 2018; Yang et al., 2018). Even with

recent improvements to GANs (Gulrajani et al., 2017) some (Wu et al., 2018) (in-

cluding us) still find training GANs for shape completions unreliable, with some

methods intentionally weakening the discriminator (Yang et al., 2018) to improve

stability. We might hope that by employing VAEs with GANs we could sample sub-

stantially different yet plausible completions for a single input, yet past work using

this structure only evaluate a single sampled completion relative to ground truth (Wu

et al., 2016, 2018; Yang et al., 2018). In our experience VAE-GANs have resulted in

visually pleasing samples with low diversity.

Representing Bounding Box Uncertainty: Our proposal for encouraging

diversity involves explicitly training the feature space of a VAE to represent means

and variances in properties such as position, orientation, and size. Similar to a TL-

network (Girdhar et al., 2016) we provide ground truth information for these features

during training, forcing the encoder to learn these features and providing the decoder

with noiseless values. The vector representation of these chosen features and their

uncertainties must be representable and learnable by a neural network, which is a

notorious challenge when representing rotations in SO(3). Recently Peretroukhin
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et al. (2020) demonstrated a rotation belief representation amenable to deep learning,

which would be interesting to add to our framework. We follow the approach of

Tremblay et al. (2018) and represent pose as a bounding box using 8 3-dimensional

points. However, the standard independent Gaussian prior of a VAE is a poor prior

for boxes where we expect corner locations to be highly coupled.

Normalizing flows have become popular in image generation as a method to in-

vertably and losslessly map the tightly coupled distribution of pixel values onto an

independent Gaussian distribution (Dinh et al., 2014, 2017; Kingma and Dhariwal ,

2018). However, normalizing flows have also been proposed to model posterior distri-

butions of VAEs (Rezende and Mohamed , 2015; Vahdat and Kautz , 2020). We take

a similar, but inverted, approach and learn a normalizing flow as a map from the

distribution of bounding boxes to the same independent Gaussian distribution used

in our VAE.

4.3 Problem Formulation and Metrics

We assume a dataset of pairs (x, y) where x is the two voxelgrids (known occupied,

known free) for voxelized shape y. In this work we refer to an object as a mesh at an

unspecified pose and a shape as a voxelgrid produced by an object at a specific pose.

We assume that for each x there is given a set of plausible completions P(x). We desire

a non-deterministic function ỹi ∼ f(x) where ỹi is a voxelgrid called a completion of

x. Drawing n samples from f(x) gives a set of completions Ỹx = {ỹ1, ..., ỹn}. Let

d(y1, y2) be a distance function between two voxelgrids. We define the Best Accuracy

asMA(x) = minỹi∈Ỹx d(ỹi, y). For a given (x, y) pair in our test dataset we additionally

evaluate the quality of f using 3 criteria:

1. The coverage of plausible completions:

MC(x) =
1

|P(x)|
∑
ŷ∈P(x)

min
ỹi∈Ỹx

d(ỹi, ŷ) (4.1)

2. The average plausibility of completions generated by f :

MP (x) =
1

|Ỹx|
∑
ỹi∈Ỹx

min
ŷ∈P(x)

d(ỹi, ŷ) (4.2)
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Figure 4.2: Our network, PSSNet, has the structure of a VAE during inference.
During training we separate the latent space into typical learned VAE features and
“latent box” feature produced by a learned normalizing flow applied to the ground
truth bounding box. These latent box features are used both as a loss on the encoder
prediction and as input to the decoder during training.

3. The Plausible Diversity:

MPD = MC +MP (4.3)

MA is most similar to metrics used in previous work and is also not dependent

on construction of P . MC penalizes plausible shapes that are not generated by f ,

whereas MP penalizes network samples that are far from P . We want to generate

diverse samples that are plausible, thus we seek an f that achieves lowest MPD, which

is the chamfer distance between the sets P and Ỹ .

4.4 Method

Our Plausible Shape Sampling Network, PSSNet, is an adaptation of a variational

auto encoder (VAE). During inference PSSNet exactly follows a VAE, with an encoder

that predicts a latent mean and variance from which a latent vector is sampled, and

a decoder that produces a 3D voxelgrid from this latent vector. During training

PSSNet differs from a VAE by replacing a portion of the latent space with a learned

representation of an additional input.

Our training data starts with a set of mesh objects at a single pose. For each

object we compute an axis-aligned bounding box. We then augment the dataset
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by applying rotations and translations to each object and bounding box. Finally, we

compute the voxelized shape y and the known-free and known-occupied voxels x from

a fixed view.

We train a normalizing flow on the bounding boxes of the training dataset with a

Gaussian prior N (0, 1). Each bounding box consists of 8 points, thus this flow maps

from a 24 dimensional “box” space to a 24 dimensional “latent box” space ψ. The

flow consists of 8 RealNVP networks (Dinh et al., 2017), each with 2 hidden layers

of size 512. During training batch normalization is performed between every other

RealNVP network.

We then use this flow in training PSSNet (Fig. 4.2). The encoder takes as input

x the known-occupied and the known-free 643 voxelgrids. 2× 2× 2 convolutions with

a stride of 2 and relu activation are applied 4 times sequentially using [64, 128, 256,

512] channels. The output is densely connected to a 200D latent-mean and 200D

latent log-variance. During inference the network is identical to a VAE, and thus

a latent vector is sampled from this mean and log-variance. The decoder inverts

the structure of the encoder, with a dense layer reshaped into a 4x4x4x512 tensor

followed by “deconvolution”, or convolution-transpose layers again with a stride of

2. The output of the decoder, ỹ, is a 643 voxelgrid that represents the probability

of occupancy for each voxel, independently. We threshold this voxelgrid at 0.5 to

produce a binary occupancy.

During training, PSSNet differs from a VAE during the latent space sampling.

The latent space is partitioned into two vectors: zf and the 24 dimensional latent

box space zb. During training zb is replaced by ψ, the latent box produced by the

normalizing flow applied to the bounding box, thus zb has no effect on the final

voxelgrid produced. A loss term Lflow rewards the log-likelihood of ψ given the latent

mean zbµ and variance zblogvar produced by the encoder. Additional loss terms for binary

cross-entropy reconstruction loss Lrec and LVAE form the Monte Carlo estimate of the

Evidence Lower Bound (ELBO) (Kingma and Welling , 2014) as applied to shape

completion (Yang et al., 2018; Wu et al., 2018). With N as the total number of

voxels (643), y[i] as the target value {0, 1} of the ith voxel, and ϕ(µ, σlogvar) is the

probability density at µ of a Gaussian with log-variance σlogvar.
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Lrec = p(y|z) =
1

N

N∑
i=1

−y[i] log(ỹ[i])− (1− y[i]) log(ỹ[i])

(4.4)

LVAE = log(p(zf ))− log(p(zf |x)) = log(ϕ(zf , 0))− log(ϕ(zf − zfµ, zflogvar)) (4.5)

Lflow = log(p(ψ|zbµ, zblogvar)) = log(ϕ(ψ − zbµ, zblogvar)) (4.6)

4.5 Quantifying Plausibility

Many shape completion methods evaluate results using the metric d(f(x), y),

which may be appropriate if the ground truth shape is unambiguous given the view

from the depth camera. However, given two different shapes y1, y2 in the dataset with

similar corresponding depth camera image x1 ≈ x2 it is unreasonable to expect f to

always generate the correct output. Furthermore, for our application we desire f to

output diverse yet plausible shapes.

We propose two criteria to define some yj as a plausible completion of xi:

• Observing xi given yj must be sufficiently likely given a camera observation

model

• The object represented by yj is in the test database, possibly with a different

pose

To address the first criterion we define an observation model obs(x, y) as the like-

lihood of observing the depth image of the 2.5D view Im(x), given that the true

occupied voxels are y. Similar work uses the sum-of-squared depth differences of

Im(x) − Im(y) (Desingh et al., 2016), yet we find this model is not sufficiently dis-

criminative. On the other hand, applying a Gaussian belief to each pixel indepen-

dently (Wüthrich et al., 2013) is far too discrimative, as a single pixel can alter the

likelihood by orders of magnitude. We have had the most success with an outlier

rejection model (Narayanan and Likhachev , 2016).

We define our obs(x, y) as a binary likelihood in Algorithm 9, indicating if x is

or is not plausible. We first compute a mask of unreliable depth pixels as any pixel

in Im(y) with gradient greater than some threshold δ, and inflate this mask by one

pixel (Line 3). We accept x as a plausible depth image of y if every reliable pixel

of ||Im(x) − Im(y)|| is below pmax = 4cm. Depending on sensor noise it may be

appropriate to allow some outliers. We deem certain pixels in the depth image Im(y)
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“unreliable” if they are at the boundary of shape, as discretization approximations

due to pixelization may assign a vastly different depth value due to a slight translation

orthogonal to the camera. We see this effect on physical hardware such as a Kinect as

depth values near the boundary of shapes are sometimes far too large, causing points

to trail off into the background.

With obs now defined, we generate candidate shapes using objects from the test

dataset DTEST . Uniformly sampling poses and objects is infeasibly inefficient, as the

vast majority of samples are not plausible. As in previous particle filter approaches

(Klingensmith et al., 2016a), we sample candidate states and project these onto a

manifold of states more likely to be plausible. Algorithm 10 describes our approach.

For each (xi, yi) ∈ DTEST we attempt to create a plausible completion using every

element (xj, yj) ∈ DTEST . We find a transformation T to align the 2.5D voxelgrids xj

to xi using ICP (Rusu and Cousins , 2011) (Line 3). We then check if the observation

is plausible given this aligned shape.

Algorithm 9: Observation Plausible: obs(x, y)

1 obs image = Im(x)
2 exp image = Im(y)
3 mask = ComputeUnreliable(expected image)
4 for each pixel index i not in mask do
5 if ||obs image[i] - exp image[i]|| > pmax then
6 return False

7 return True

Algorithm 10: Compute Plausibles(xi)

1 P(xi) = ∅
2 for (xj, yj) ∈ DTEST do
3 T = ICP (xj, xi)
4 if obs(xi|Tyj) then
5 P(xi) = P(xi) ∪ Tyj
6 return P(xi)

4.6 Experiments

We present quantitative and qualitative results demonstrating that for non-ambiguous

completions PSSNet performs on par with existing methods, and that when there is

ambiguity PSSNet performs better. We created datasets from shapenet (Chang et al.,

2015) and YCB (Calli et al., 2017) such that 2.5D views could have multiple consistent
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Figure 4.3: Coverage (Eq. 4.1) of various methods for shapenet mugs at different
rotation angles. Rotations where the mug handle is occluded are highlighted.

Figure 4.4: Completions (green) of a mug are sampled from the visible 2.5D view
(grey). When the handle is visible (left) all methods produce similar mugs close to
the ground truth (GT) (blue). When the handle is occluded (right) sampling from
PSSNet yields mugs with different styles of handles in different orientations, with
similar variation seen in the plausible set (4 shapes shown).

completions. We trained PSSNet as described above as well as a VAE, a VAE with

GAN loss similar to (Wu et al., 2016), and 3D-rec-GAN++ (without super-resolution

layers) (Yang et al., 2018), with networks accepting and producing voxelgrids of size

643. We constructed plausible completions P for each x in our test dataset and evalu-

ated our metrics (Section 4.3) using d(y1, y2), as chamfer distance between voxelgrids

converted to pointclouds, as it is a common metric of shape completion quality (Wu

et al., 2018).

Shapenet Mugs: Using the mugs category from shapenet we constructed a

dataset of 209 train and 5 test meshes. We rotated each mesh and associated bounded

box in 5 degree increments about the vertical axis and voxelized using binvox (Min,
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Shapenet: all mugs Shapenet: occluded handle

best
acc

coverage
of P

avg.
plaus

plausible
diversity

best
acc

coverage
of P

avg.
plaus

plausible
diversity

PSSNet (ours) 2.3 2.3 2.9 5.3 2.3 2.0 3.1 5.1
VAE 3.1 2.8 2.5 5.3 3.9 3.4 3.0 6.4

3D-rec-GAN 2.6 3.2 2.5 5.7 2.9 4.1 2.9 7.0
VAE-GAN 3.0 2.6 2.4 5.1 3.8 3.2 2.8 6.0

YCB: 30 pixel wide slit YCB: 6 pixel narrow slit
PSSNet (ours) 1.3 1.7 3.2 4.8 2.3 4.5 4.4 8.9

VAE 1.5 3.1 1.8 4.9 3.0 7.8 2.8 10.6
3D-rec-GAN 1.2 3.6 1.2 4.8 4.6 9.6 2.9 12.4
VAE-GAN 1.3 3.3 1.6 5.0 3.1 7.9 2.7 10.6

Table 4.1: Best sample accuracy, Coverage of the plausible set, Average sample plau-
sibility and Plausible diversity in mm. PSSNet performs best relatively in “Shapenet:
occluded handle” and “YCB: narrow slit”, as in these datasets there is ambiguity in
the full shape given the partial view.

2004 - 2020), creating 15048 train and 360 test shapes. For approximately 1/5 of

rotations, the handle is completely occluded from the 2.5D view.

We display the coverage metric for three of these shapes in Fig. 4.3. The left and

middle mugs have a typical handle and when the handle is visible all methods obtain

similar coverage. When the handle is occluded other methods perform far worse on

MC , meaning there are plausible completions that significantly differ from any samples

produced by the network. PSSNet retains similar coverage even in these occluded

regions. The right mug is square and unlike mugs in the training dataset, and the

chamfer distance reconstruction error is dominated by the mug body reconstruction.

We visualize samples in Fig. 4.4 and qualitatively observe the same trends. When

visible, all methods accurately reconstruct the mug handle, but when occluded other

methods tend to average over plausible mugs and produce poor and non-diverse sam-

ples. For the 7 mugs from PSSNet the handles vary in orientation and style while

remaining in the occluded region. We find PSSNet generates these diverse plausible

handles for many but not all mugs. Qualitatively, we observe similar behavior for

PSSNet with live Kinect depth images using a hard-coded segmentation of a mug

(Fig. 4.1).

YCB with slit occlusion: We constructed a training dataset by applying a total

of 24 rotations about the vertical and a horizontal axis for each YCB object. During

training we occlude left and right portions of the depth image to simulate viewing

the object through a vertical slit. We randomly translate the YCB shape and then
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Figure 4.5: Completions of YCB objects as viewed through a 6 pixel narrow slit with
the nearest plausible shape shown for each network sample. PSSNet generates diverse
samples where other networks generate only small variations on the same sample.

randomly select a slit of width 5 to 30 pixels (1 pixel ≈ 0.6cm) and randomly place

this slit so that the target object is visible in at least 5 columns of the image. A

full 2.5D view of any YCB object leaves little ambiguity, this slit simulates viewing

occluded objects in a cluttered scene.

We construct two test datasets for a subset of the YCB objects by using the same

set of rotations but fix the translations and fix slit widths to 6 and 30 pixels. For

each fixed slit width we construct a separate P by fitting (Alg. 10) each test shape at

each orientation and each translation along the slit in 2 pixel increments. 6 pixels is a

small portion of each object, thus in this dataset different objects with many different

translations tend to match each x. The 30 pixel slit captures most of the object, so

there is little ambiguity as to the 3D shape. We visualize completions in Fig. 4.5.

Metrics averaged over all test datasets are shown in Table 4.1. PSSNet consistently

provides the best coverage. PSSNet performs comparably in plausible diversity for

the datasets with lower ambiguity and outperforms baselines for datasets with greater

ambiguity.

4.7 Discussion

We achieve our goal of creating a network that generates diverse samples, while

other networks generate only small variations on a single completion. PSSNet, how-

ever, performs worse on MP , indicating that either PSSNet sometimes produces poor

quality samples, or that P lacks some plausible completions. Subjectively, we see

both cases. Given a larger set of test shapes, P would contain more shapes, and
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likely MP would improve.

Below we discuss advantages and limitations of our design choices for PSSNet and

the plausible set:

Feature replacement: The main advantage we see in partial feature replacement

in the latent space of the VAE is proper credit assignment between the encoder and

decoder during training of ambiguous samples. For inputs where the reconstruction

is inherently ambiguous we desire the encoder to predict variance in the latent space.

Given this ambiguity the reconstruction loss is minimized when the decoder averages

over the ambiguity. Replacing these latent box features during training removes some

ambiguity so that the minimum of the reconstruction loss is a specific object.

The main limitation we perceive is the addition of a human-defined prior on fea-

ture structure, requiring domain-specific preprocessing of a dataset. However, as

our network still retains many learned latent features we do not lose the ability to

generalize beyond the human-defined features.

Normalizing flow: The normalizing flow transforms the human-defined features

into a range appropriate for our N (0, 1) VAE prior. In addition, features sampled

with independent variance map back to (approximately) boxes, which is not true of

independent sampling of bounding box coordinates. Furthermore, training this flow

does not require defining a distance function in latent box space, and with a well-

trained flow any latent box from the dataset will be relatively likely under the VAE

prior.

Our choice to train the flow separately from the VAE simplifies the training but

limits the distributions representable by our VAE latent space, as the latent distribu-

tion zb assumes independent variance on each dimension. To illustrate this limitation,

suppose a correlated change of ψ[1] and ψ[2] caused “box z-axis rotation” whereas

the anticorrelated change caused “box x-axis translation”. In this hypothetical it is

impossible to represent uncertainty only in “box z-axis rotation” using independent

uncertainty over zb. We have not quantified this limitation, but in practice suspect it

is mitigated from the over-parameterization of our features by using a 24-dimensional

box.

Computing the Plausible Set: ICP finds local, not global, minima and typi-

cally ICP is run many times with different initializations. Our dataset DTEST con-

tains many copies of each object at different rotations, and these copies serve the

function of different initializations.

However, there are some limitations of our plausible set computation. Our algo-

rithm to compute P is quadratic in the size of the dataset, and although P is not
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needed for inference and only needs to be computed once for each DTEST , this prac-

tically limits the size of our dataset. In addition, our observation model explicitly

ignores small depth errors without considering correlation of errors between pixels,

yet small but correlated depth differences could be used to identify larger shapes.

For example, consider a dataset where some shapes have a small embossed logo, and

thus detecting this logo should inform the completion of the full shape. Similarly, we

explicitly discard depth values on the borders of shapes as independently these pixels

tend to be noisy, yet again correlated depth values may provide useful information

that is observable even with the independent noise. Our network f may use such

features, but P will not, thus our evaluation may be overly harsh on our network,

penalizing it for not generating shapes in P even when they are not plausible.

4.8 Conclusion

In this chapter, we proposed PSSNet, a method for generating diverse yet plau-

sible 3D completions of a 2.5D depth image. A normalizing flow transforms the side

information of the true shape bounding box into a feature space, which is used dur-

ing training to encourage an encoder to generate diverse latent space samples, and

to aid the decoder in producing plausible samples. To evaluate this method on a

specific dataset we proposed a shape matching method to generate a set of plausible

completions, as well as metrics for plausible diversity. In experiment PSSNet gen-

erated diverse samples and outperformed existing approaches for depth images with

ambiguous reconstructions.
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CHAPTER V

CLASP: Shape Completion with Contact

Chapter IV introduced PSSNet as a method for generating diverse yet plausible

completed shapes from depth images. This chapter extends this shape reconstruction

when robot contact information is available. An initial set of shapes is generated from

depth camera information alone. As a robot moves around and bumps objects in the

scene, the generated reconstructions update to reflect the learned contact information.

5.1 Introduction

You look into a cabinet and see a box of crackers. You reach in and attempt to

grab the box from the side, but your fingers hit something. Perhaps this box is larger

than you thought? Your mental model of the box updates, you try a wider grasp,

and you successfully retrieve your snack. Robots are currently not so adept. While

they can estimate the pose of known shapes (Klingensmith et al., 2016a) or estimate

parameters of objects (Desingh et al., 2019b), they cannot yet fuse this visual and

contact information to draw from the wide range of shape priors in the world. A robot

could try to learn its next action directly from vision and force feedback instead (Lee

et al., 2020), but this approach lacks the logic to generalize to scenarios not seen in

training.

This chapter proposes a method that allows robots to mimic the process of up-

dating object shape from contact information. A shape completion neural network

first generates beliefs over possible object shapes based on visual RGBD data. The

belief updates the object shape to be consistent with contact information gathered

by a robot moving in the scene. We make the realistic assumption that the RGBD

camera perceiving the scene suffers from sensor noise and occlusion. As in the rest

of this thesis, we assume the robot can sense if it collides with an object, but not

where the contact was made (i.e., no sensorized skin). Many of the “cobot” platforms
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available today utilize this contact model to detect collision and stop before harming

a person.

Formally, this type of contact creates a contact manifold, a thin space of shapes

with a boundary bordering the robot. Past work has projected shapes onto the

contact manifold in object pose space (Koval et al., 2015) and robot configuration

space (Klingensmith et al., 2016a), but both require known shape geometry. Our

objective is to update the unknown shape geometry to satisfy contact constraints.

Returning to the cracker box example, the robot will be unsure if the contact occurred

at the top finger, the bottom finger, or perhaps the back of the hand or the elbow.

Filling in all possible contact points would lead to absurd scenes with robot shells

protruding from the cracker box. However, ignoring this contact information leaves

the robot with the original belief of the thinner cracker box and no explanation of

why the attempted grasp failed. Our shape completion network generates a prior in

latent shape space which can be decoded into shapes in workspace; however, shapes

generated directly from this latent prior are unlikely to satisfy contact constraints.

The key insight of this chapter is that latent samples from our neural network

can be projected onto the contact manifold in the latent shape space using iterative

gradient descent, creating shapes both likely under the visual prior and consistent

with the contact information. We further expect these projected shapes to be closer

to ground truth than direct samples not considering contact.

We accomplish this with our proposed Constrained LAtent Shape Projection

(CLASP), which stores a belief over shapes in a particle filter. Each particle rep-

resents a collection of latent object shapes which can be decoded into a scene. Every

new robot measurement of contact and freespace triggers an update on all particles.

During each particle update, gradient steps are taken to increase the occupancy like-

lihood of the most likely point(s) explaining the contact(s), decrease the occupancy

likelihood of the free points, and increase the latent likelihood under the shape prior.

We test this method both in simulation and on a live robot by constructing scenes

of objects on a tabletop, generating robot motions that generate freespace and contact

observations (Fig. 5.1), updating the belief using CLASP as well as baselines, and

comparing the set of sampled shapes to the ground truth scene. We find CLASP out-

performs both ablations of CLASP, as well as the approaches of Rejection Sampling

and directly updating the input to the shape completion network. We also find that

CLASP produces more accurate scenes than a VAE GAN shape completion network.
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Figure 5.1: A visual RGBD view of
objects leave ambiguity final shape
due to sensor noise and occlusion,
which we store as a set of sampled
scenes in a particle filter. Contact
information (pink) reduces ambigu-
ity, and using CLASP the particles
converge to the true shape.

Figure 5.2: CLASP Architecture
Top: Shapes sampled from RGBD.
Middle Right: A robot motion detects free
space (light blue) and a collision set (pink).
Middle Left: Latent samples are projected to
satisfy contacts (green). Ovals depict the la-
tent prior.
Bottom: Final samples satisfy the contact
constraints.
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5.2 Related Work

Shape Completion from Vision: The goal of Shape Completion is to predict

a full shape from a single partial input. Recently, neural networks have become a

popular method of shape completion. A common network architecture learns an

encoder to a feature space followed by a decoder to the shape output (Zhirong Wu

et al., 2015; Choy et al., 2016; Girdhar et al., 2016; Wu et al., 2018, 2017; Michalkiewicz

et al., 2020; Wen et al., 2019; Xie et al., 2019; Fan et al., 2017; Yu et al., 2020; Yang

et al., 2018; Wu et al., 2016). Scene Completion networks are trained on larger spatial

volumes of occupied points and use similar architectures with adaptations to join

information from multiple scales (Roldão et al., 2021). While most methods predict

the single best estimated shape, we build off work that uses a variational autoencoder

architecture to produce plausible and diverse shapes (Saund and Berenson, 2020b).

We draw from the vast work on shape and scene completion and contribute a method

that improves scene estimates using contact information from a robot. For a more

thorough overview of shape completion from vision, refer back to chapter IV 4.2.

Shape Completion from Touch: In different works, “touch” can refer to a

single known contact point, a contact configuration, force-torque measurements, or a

rich tactile sensor. Work using the definition of contact point or contact configuration

typically uses touch to reduce the version space of shape possibilities (Jung , 2019), but

such approaches cannot tractably capture the diversity of all shapes. Alternatively,

some situations model known shapes with unknown poses (Desingh et al., 2019b).

Both classical Iterative Closest Point (Besl and McKay , 1992; Yang et al., 2020) and

neural networks (Narayanan and Likhachev , 2016; Deng et al., 2019; Hodan et al.,

2020) have been used to predict valid poses. To generate samples consistent with

contact information, the Implicit Manifold Particle Filter projects sampled poses onto

the contact manifold using an iterative approach (Koval et al., 2015). Analogously,

we project sampled particles onto the contact manifold in the latent shape space of

our neural network.

Touch can also refer to the rich tactile sensors such as GelSight (Yuan et al.,

2017) or soft-bubble grippers (Alspach et al., 2019), with input more analogous to

images. Neural networks have used these sensors for material classification (Yuan

et al., 2018b) and grasped pose estimation (Kuppuswamy et al., 2020). We do not

assume our contact sensing has such rich information.

Combining Vision and Touch: A neural network can combine vision and

touch (force + torque (Lee et al., 2020), or GelSight (Li et al., 2019)) using separate
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encoders to a latent space for each sensing modality alongside a decoder to a variety

of spaces. We considered a similar encoder structure with a decoder to produce

completed shapes, but this would require a large dataset of (Shapes × Contact +

Freespace) measurements and the resulting network would be only applicable to the

robot used for training. Our method is most similar to the work of Wang et al. (2018),

which uses gradient descent on the latent space of a shape completion network to

enforce touch constraints. Where that work uses a high-resolution GelSight tactile

sensor to refine shape details previously reconstructed from vision, our work focuses

on ambiguous shapes (e.g. a box with unknown depth, or novel shapes not in the

training data) and the lower information measurement of contact detection. We

accomplish much larger shape updates by using a diverse set of predictions and a

novel projection loss function.

5.3 Problem Formulation

Consider a robot R observing a static scene composed of specific objects oj sam-

pled from some distribution of objects O. The objects divide the workspace into

occupied space Wocc and free space WF = W \Wocc The robot has access to a train-

ing subset of O beforehand, but does not know the specific objects oj in the current

scene.

The robot observes the scene with two distinct sensing modalities. In the visual

modality, the robot views the scene from a stationary RGBD camera receiving color

depth images Im. Due to sensor noise and occlusion these depth images offer an in-

complete and noisy measurement on the full region of Wocc occupied by the obstacles.

From the camera image we assume the scene can be segmented into distinct objects

from O.

For the tactile modality, consider a robot that is able to sense if it has made

contact with any object, but not where along the robot surface the contact was

made. We assume the contact does not move the objects. For a configuration in

configuration space q ∈ C, let R(q) ⊂ W denote the region of workspace occupied by

the robot. A robot that has visited configurations {q1, q2, ...} = Qfree ⊂ C without

observing contact can carve out regions of known free space:

∪q∈QfreeR(q) = Wknown free ⊂ WF (5.1)

For each configuration qcontact ∈ Qcontact where contact is observed, there must be at
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least one object point in collision with the robot (and not in known freespace).

∀qcontact ∈ Qcontact ∃ pcontact ∈
(
R(qcontact) \Wknown free

)
: pcontact ∈ Wocc (5.2)

Using existing nomenclature, each such region is called a Collision Hypothesis Set

(CHS) (Saund and Berenson, 2018).

Our objective is to model the conditional occupancy p(Wocc|O, Im,Qfree, Qcontact).

Specifically, we desire a stochastic function g(O, Im,Qfree, Qcontact) which generates

sample Wocc as similar as possible to the true conditional distribution. Since the true

conditional distribution is unknown, in practice we seek to minimize the distance of

drawn samples to the ground truth scene.

5.4 Method

Our approach is to use a particle filter storing a collection of latent shapes. We first

segment the scene into distinct objects, then use an existing shape completion neural

network to draw latent shape samples zj for each object from p(zj|O, Im), initializing

the particle filter. Each particle can be decoded into the objects in a scene, thus the

collection of particles represents the belief p(Wocc|O, Im). We propose Constrained

LAtent Shape Projection (CLASP) as the measurement update, projecting these

samples onto the constraints imposed by Qfree and Qcontact.

5.4.1 Initial Belief

The RGBD camera images are passed to a segmentation algorithm, which yields

distinct pixel regions in the image corresponding to different objects oj. For each

object oj the corresponding portion of the depth image is converted first to a point

cloud, then voxelgrids of known-occupied and known-free space centered around the

visible object points with a transform Tj mapping the voxelgrid to the workspace

coordinates.

For each object oj we use the Plausible Shape Sampling Network (PSSNet) (Saund

and Berenson, 2020b) f to generate possible shape completions. PSSNet is structured

as a variational autoencoder. An encoder fenc maps the known-free and known-

occupied voxelgrids to a mean and variance in latent space. A latent vector z can be

sampled and passed to the decoder fdec, which outputs a probability of occupancy for

each voxel. Thresholding (e.g. p > 0.5 for each voxel) yields a completed shape.

An object oj that is representable by f can be stored compactly as zj such that

57



fdec(zj) = oj. The transform Tj maps the completed shape into the workspace frame.

A world is composed of static objects {o1, o2, ...} ∈ O. A particle φ stores a specific

world as a sequence of latent-space vectors {z1, z2, ...}. We sample worlds conditioned

on only the depth-image observation by independently sampling latent vectors of

objects. The initial belief is a set of particles {φ1, φ2, ...} ∈ Φ generated from the

information from the depth camera before any robot motion.

5.4.2 Projecting a single object

Sampling particles using only camera information may yield worlds that are in-

consistent with the robot contact information. For example, PSSNet may predict

objects that extend far into occluded space that intersect regions the robot has moved

through. Alternatively, PSSNet may predict objects that do not extend into occluded

space, and so the robot may observe contact with no object to explain the collision.

Predicting shapes from vision and robot contact in a single pass would require a

dataset specific to each robot and a specific set of motions.

To resolve these inconsistencies, sampled particles are projected onto the con-

straints in the latent space of the shape completion network, shown in Fig. 5.2. For

sample i of object j, zij induces a workspace occupancy. Our constraints lie in the

workspace, but we wish to project the latent space vector. Therefore, the projection

is accomplished by optimizing a loss via gradient updates on zij while holding fdec

fixed, mirroring the process of training a neural network but optimizing the input

instead of the network weights. Consider the unthresholded voxelgrid with values

between 0 and 1 produced by the decoder: fdec(z
i
j) = φij.

We optimize the loss: Lall = Lfree + Locc + Lprior

The first term Lfree penalizes all voxels predicted above a threshold δ that are

known to be free.

Lfree =
∑
x,y,z

max(φij(x, y, z)− δ, 0) Wknown free(x, y, z) = 1

0 otherwise
(5.3)

The second term Locc penalizes unexplained contact. Each contact qcontact must

be caused by some object s.t. R(qcontact) ∩Wocc 6= ∅, however it is not obvious which

object is responsible for the contact, or which voxel of the object contacted the robot.

During optimization we consider a specific assignment of Qj
contact to object oj. We

define the assignment process in Section 5.4.3. Because a single occupied voxel is

enough to explain a contact, at each iteration the loss is optimized based on the
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maximum prediction of occupancy overlapping with the collision hypothesis set.

Locc =
∑

q∈Qjcontact

1−max
(
R(q) · φij

)
(5.4)

The final term Lprior penalizes deviation of z from the original distribution pre-

dicted by the encoder. Without this constraint, z can deviate arbitrarily, losing all

dependence on the depth image and even leaving the training domain of fdec. This

would produce completions that no longer look like objects. Lprior is weighted by α

to maintain a similar magnitude of gradients to Lfree and Locc.

Lprior = −α log
(
P (zij|fenc(Im))

)
(5.5)

Sampling the occupancy for a specific object oj given Im,Qfree and Qj
contact is

thus accomplished by sampling a zj and optimizing until the constraints are satisfied.

Projection can fail if an iteration limit, set to 100 steps, is reached without satisfying

the constraints. For practical efficiency this failure can sometimes be detected early

when gradient updates no longer change the loss and the constraints are not satisfied.

We use Adam (Kingma and Ba, 2014) for optimization with a learning rate of 0.01.

5.4.3 Multi-object completion

CLASP stores an assignment of each qcontact to a particular object oj for each full-

scene particle i. When a measurement contains a new contact qcontact, it is assigned

to a specific object for each sampled particle i as follows. First, the output of our

shape completer is a finite-sized voxelgrid, typically smaller than the full scene. The

new qcontact cannot be assigned to any object j where R(qcontact) lies entirely outside

the output region of the decoder fdec(zj). Next, for each remaining j, a projection

is attempted for each zij to satisfy the new qcontact. If all attempts fail, we assume

this new qcontact was not caused by object j. For each full-scene particle i, a specific

assignment of qcontact is randomly and uniformly selected from the remaining objects

j that could possibly explain the contact.

5.5 Experiments

We evaluated scenarios of different objects to determine if CLASP improves the

estimate of the scene using robot contact information. We tested ablations of CLASP
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to evaluate the importance of the latent prior and constraint satisfaction. We also

tested alternative approaches to CLASP that did not rely on projection. Finally,

we compared CLASP on two different network architectures and trained on multiple

datasets. We trained separate instances of PSSNet (Saund and Berenson, 2020b) on

Axis-Aligned Boxes (AAB), YCB (Calli et al., 2017), and ShapeNet mugs (Chang

et al., 2015) (training details in Section A.4.1).

5.5.1 Robot Contacts

Simulation: To generate contact measurements we moved the right arm of a

robot composed of two Kuka iiwa arms with Robotiq 3-finger grippers. We generated

scenes by manually placing simulated objects from AAB, YCB, or ShapeNet on a

virtual table at about camera height. The known voxels were passed to our trained

PSSNet to generate a set of possible completions.

We generated robot motions to gather information by moving near and sometimes

contacting the objects using the procedure described in the appendix A.4.2. The first

motion typically sweeps known free space rather than making contact. The second

or third motion intentionally makes contact with the object.

Live Robot: The physical kinematics of our robot matched the simulated robot.

A Kinect depth camera mounted at the “head” position generated the RGBD images.

A calibrated motion capture system provided transforms between the Kinect and

robot frames. We segmented the RGB image using the CSAIL semantic-segmentation-

pytorch library (Zhou et al., 2018) which we retrained on YCB objects. Each seg-

mentation was converted into a voxelgrid and fed to PSSNet as in simulation to

generate sample worlds. The same procedure was used to generate robot motions as

in simulation.

On the live robot, contact was determined at each configuration by checking if

the measured external torque exceeded a threshold of 2Nm per joint. This threshold

was large enough to avoid generating false positives while remaining sensitive enough

to detect contact with secured objects.

5.5.2 Scenes

We tested four scenes in simulation and two on the live robot. Each scene consisted

of a single object secured to the table in front of the robot. We also tested a scene of

multiple YCB objects. Contacts occurred with occluded sections of the objects, with

examples shown in Fig. 5.5. In both simulation and the live robot, table occupancy
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Figure 5.3: Boxplots showing the Chamfer Distance from sampled particles to ground
truth. The mean, middle quartiles (boxed colored region), and outer quartiles exclud-
ing outliers are shown. Rejection Sampling and VAE GAN occasionally produced no
valid shapes, in which case no box is displayed.
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Figure 5.4: Boxplot results for the mul-
tiobject scene. PSSNet + CLASP:
No contact disambiguation fails to
project any samples for observations 4
and beyond, so there is not correspond-
ing box.

Figure 5.5: The Deep Cheezit (left), Mug
(Middle), Live Cheezit and Live Pitcher
(Right) scenes. The occupied (black) and
known free (not shown) voxels from vi-
sion with contact (transparent red) and
robot free (not shown) voxels are all used
by CLASP to generate completed shapes
(green).

was not considered when evaluating the quality of the completions.

Simulated Scenes: The first pair of scenarios used a single YCB Cheezit box

(Shallow) and a stack of three Cheezit boxes (Deep). These setups generated simi-

lar depth images but different ground truth shapes. Both used networks trained on

the AAB dataset. The Simulated Pitcher from YCB was positioned with the handle

occluded from view and used networks trained on the full YCB dataset. The Simu-

lated Mug from ShapeNet also had the handle occluded from view and used networks

trained on all mugs in ShapeNet. The handles on these objects were localized through

contact.

Live Scenes: The Live Cheezit also consisted of a stack of three boxes, and again

the Live YCB Pitcher had the handle occluded. Both scenes used networks trained on

the full YCB dataset. The Cheezit boxes were attached together and the pitcher was

taped to prevent motion during contact. Simulated objects were manually aligned

to the live scene to approximate the ground truth of live objects and were used for

evaluation.

5.5.3 Baselines

We compared our proposed method to the following alternatives. In Rejection

Sampling we sampled latent space vectors from the distribution predicted by the
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encoder, then decoded these into 3D objects and rejected any samples not satisfying

the contact or free space constraints. For OOD (Direct Out-Of-Distribution Pre-

diction), we augmented the RGBD known free and occupied voxels with the contact

information. While other methods did not have access to the true contact point, we

allowed this method this advantage and added the true contact point directly to the

known occupied voxels from the depth image. Finally, while other approaches used

the PSSNet shape completion network, we tested using a VAE GAN (Wu et al., 2016)

network. This network tends to produce better average but less diverse samples.

We also tested ablations of our method. CLASP: ignore prior tested remov-

ing the loss term Lprior. CLASP: accept failed projections tested accepting all

projections, even those that do not satisfy the contact constraints. To test our contact

assignment in the multi-object case (Section 5.4.3), CLASP: No contact disam-

biguation determined if a projection of latent zj could satisfy each new qcontact as

in CLASP, then assigned each qcontact to all feasible objects j. This resulted in scenes

explaining a single qcontact with multiple objects.

100 particles were sampled in each method, with the threshold of Lfree set at

δ = 0.4 and the weighting of Lprior set at α = 0.01.

5.5.4 Results

Results for the various single-object scenes were tested on all baselines using PSS-

Net trained with the appropriate dataset. Fig. 5.3 compares the Chamfer Distance

(CD) (Barrow et al., 1977) of each accepted sample to the ground truth. We con-

sider a different analysis in Section A.4.3. We find that Rejection Sampling often

performs well during the first few observations with zero or one contact. However,

Rejection Sampling soon fails to return any valid samples with two or more con-

tacts. We see that OOD produces completions that are typically much worse than

the original completions from only vision. The initial estimate (observation 0) from

VAE GAN are hit-or-miss. All networks saw the YCB Pitcher during training, and

VAE GAN recalls the pitcher more accurately than PSSNet during testing to the

point where contacts are unnecessary. However, the recall of VAE GAN in the other

ambiguous scenarios is worse than PSSNet and projection to the contact constraints

often fails, leaving no sampled shapes.

Considering ablations of CLASP, accept failed projections performed as

well initially (when no projections fail) and significantly worse as the number of

observations increases. Ignoring the latent prior during projection also performs worse

and occasionally produces shapes that qualitatively look less like objects compared
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to completions from other methods.

Across all scenes, CLASP performed similarly to the best of all other methods with

0 or 1 contacts and the best with multiple contacts. CLASP successfully used the

robot contact information in all scenarios to reduce the CD between the predicted and

ground truth shapes in all scenarios. Robot measurements with a contact typically

caused a larger reduction in CD than measurements with only freespace information.

Numerically, the CD reduced most in the Cheezit scenarios, with a reduction of

the mean from 0.5cm to 0.1cm for the Shallow and from 0.14cm to 0.08cm for the

Deep. The CD reduction in the pitcher and mug scenarios was significantly smaller,

as the general shape of the pitcher and mug could be predicted from the image.

The prediction of the occluded handle was improved with contact. The trend of

improvement in the live scenes matched the simulation. However, the numeric error

of the live scenes was much larger, perhaps caused by imperfect transfer of the learned

shape completer from training in simulation to prediction on live Kinect data as well

as imperfect alignment of the robot frame to the Kinect frame.

In the multi-object scene (Fig. 5.4) the VAE GAN method achieves a better com-

pletion from the RGBD data, but our proposed method produces better samples after

2 contacts. Our proposed contact assignment (Section 5.4.3) outperforms naively sat-

isfying the contacts whenever possible.

5.6 Discussion and Conclusion

While we model CLASP using a particle filter and would like to have the Bayesian

estimate of the scene given all observations, we acknowledge many non-Bayesian

approximations. Particle filters approximate Bayes filters, but the 100 particles we

sample may not be a sufficient coverage of the latent shape space. CLASP projects

samples, which does not preserve Bayesian estimates.

While our shape network uses voxelgrids, implicit representations have recently

become popular and offer advantages worth considering. Currently shape completion

networks produce the most visually pleasing results when trained on a single object,

visually decent results when trained on a single class of objects, and poor results when

trained on large diverse shape datasets. In order to be practically applicable to robots,

shape completion must handle a wide variety of objects. Shape completion is rarely

the end goal, but rather a tool robots can use to aid in tasks. Choices of correct

metrics and refinements to CLASP ultimately depend on the specific downstream

application.
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We demonstrated a method for estimating shape completions initialized with

purely RGBD visual data, then updated from observations of a robot arm moving

through unknown regions and sensing contact. We stored the belief of the scene as a

particle filter of latent vectors from a shape completion network and used CLASP to

enforce shape consistency with the robot observations. Most importantly, we showed

that CLASP improves the estimate of object shape using these contact observations.

Our results further showed that CLASP performs better than ablations of CLASP

and alternative methods. We hope CLASP will be used within a larger robotics

framework where reasoning over environment uncertainty based on shape priors aids

in accomplishing larger goals.
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CHAPTER VI

Conclusion

This dissertation presented an approach for planning with contact feedback. The

key challenges addressed were modeling the belief over environment given the contact

measurements, and planing under the uncertainty of these beliefs. Exploring the

belief representations led to the Collision Hypothesis Set (CHS) model (Chapter II)

and CLASP (Chapter V). Planning using these beliefs required the new formulation

of the Blindfolded Traveler’s Problem (Chapter III).

This conclusion summarizes and connects the contributions in Section 6.1. Sec-

tion 6.2 discusses promising directions for future work to remove some assumptions

and expand the applicability of this work.

6.1 Summary of Contributions

6.1.1 Contact Information

This thesis explored a very specific form of contact information which we have

named Collision Hypothesis Sets. We assumed a contact generates a set of points on

the surface of the robot containing at least one point that is an obstacle. This set of

points could be as large as the entire robot surface, but frequently is much smaller

because (A) the robot has already swept out known freespace, and (B) the torque of

a joint (e.g. joint 5) has exceeded the non-contact threshold, so the contact occurs

downstream (e.g. not links 1-4).

This contact model is seldom used in other academics works, and this thesis

is a rare work that delves into the implications. Other works tend to use more

informative contact models. Some assume the robot is endowed with contact sensitive

skin. Others assume the contact location has be recovered or approximately localized
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from joint torques or force-torque sensors. Finally, some works use the dynamics of

the robot after collision to infer contact location.

With all of these competing models, it is worth reiterating why I have spent the

effort to explore Collision Hypothesis Sets. Conceptually, it appears other models

can provide more information. However, I am motivated by the practicality of the

approaches on real robots. Contact sensitive skin barely exists in laboratory robots,

and is custom, rare, and expensive on commercial robots. The CHS model is applica-

ble on a much wider set of robots for much less cost. Precise torque sensing can work

quite well in limited applications, however our Victor robot uses two Kuka iiwa arms

which have some of the most precise torque sensing available, yet still calibration is

frequently required and not accurate for the entire robot workspace. The CHS model

is much more robust to slight calibration errors. Finally, in order to use dynamic

motion to infer contact location, the robot must be moving quickly and continue

moving significantly after contact. This work explores sensing contact and stopping

motion at the limits of reliable sensing. There is too much noise in the motion and

joint torques to reliable use a method other than CHS.

6.1.2 Belief Representations from Contact Information

We have explored three belief representations of environment occupancy. The first

constructs an occupancy belief using only the CHSs. The second uses the Manifold

Particle Filter (MPF) assuming the shape but not pose of the object is known. The

final, CLASP, uses a neural network to provide a prior over shapes.

The CHS belief is optimistic, assuming almost the minimal occupancy required to

explain all contacts. The benefits of the CHS belief are the lack of further assumptions

on the shape of objects in the world and ease of implementation. The CHS model

can accommodate any shape and does not require any dataset. Depending on the

application, this optimism may be acceptable. However, often knowledge of shapes

in the world can be useful, which led us to develop other belief representations.

The Manifold Particle Filter was developed prior to this thesis, and the contribu-

tion here is the adaptation of the MPF to our contact model and planning framework.

The MPF requires knowledge of the shapes of objects in the world. If provided with

the true shapes, MPF can generate beliefs which closely match the true world. How-

ever, if provided with incorrect object shapes the MPF can become hopelessly stuck,

attempting to match incorrect geometry to the world.

The final belief explored is the Constrained Latent Shape Projection (CLASP),

using the Plausible Shape Sampling Network (PSSNet). This approaches uses a
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neural network to learn a prior over shapes, and a projection method to enforce that

sampled shapes are consistent with the observed contact information. This belief

model requires more machinery, but is capable of generating a much larger space of

shapes to match the environment.

These representations can be combined into a single belief. As shown in Chapter

III, we can construct a Mixture-of-Experts (MoE) belief that is a combination of other

belief representations. As observations look more or less likely under each “expert”,

the MoE model adjusts the weight of that representation.

6.1.3 Planning

Planning motivates this model of beliefs over world occupancy. In our problem

setup the robot’s primary objective is to reach a goal. Since the world occupancy is

uncertain, the robot may bump into objects. The previous belief representations help

the robot understand the true world and navigate to the goal. In the work presented

here, the goal was always to reach a specific configuration or any configuration from

a set of goal configurations.

The first approaches attempted in Chapter II used interleaving planning and con-

trol. A greedy local controller attempted to move the robot towards the goal. If

insufficient progress was being made, the robot invoked a global planner. This plan-

ner used approaches inspired by RRT to find the lowest probability collision path

to the goal within a time limit. Ultimately these planning approaches of Chapter II

were successful but slow. The planner was not able to reuse work between queries.

Furthermore, each stage of growing the search tree in RRT requires a binary decision

of collision, however since the true occupancy was uncertain only collision probabili-

ties are available. Finally, the collision probability of a path is not Markovian in the

edges. To calculate the probability of collision for a path, it is not sufficient to simply

know the probability of collision for each edge.

Stepping back to the fundamentals of the planning problem led to the Blindfolded

Traveler’s Problem of Chapter III. By restricting the robot motion to a roadmap,

a new problem class emerged. The Blindfolded Traveler’s Problem is a problem of

reaching a goal node when edge validity is only discoverable by attempted traversal.

This mimics the task of our robot, which only learns which motions are allowed by

attempting the motion. The robot will either collide or move freely. However, the

validity of edges is correlated, so a collision (or successful motion) provides implicit

information about many other edges. This coupling is accomplished through the

belief representations above.
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6.2 Future Work and Extensions

The development of the belief representations and planning approaches required

formal assumptions, but there is an variety of promising future work to remove some

assumptions and extend the capabilities of this contact sensing model and planning.

6.2.1 Movable Objects

This work assumed the environment was static, and thus objects did not move

even when contacted. This assumption was made primarily to focus on other aspects

of the planning with contact sensing problem, specifically the object priors and BTP

formulation. However, if many real scenarios bumping an object can cause it to move.

Fortunately, object motion can be easily incorporated into our belief models. Both

the MPF and CLASP belief models store a set of sampled objects as particles. A

standard particle filter has both a motion model and an observation model. This

thesis focused on the observation model, updating the belief over objects from contact

measurements. The BTP of Chapter III assumed a static motion model. However, a

static motion model is not required. Using priors over how objects move, the belief

could estimate the updated object at each time. Presumably in many cases the object

would remain stationary. Yet when the object is bumped, possible updates could be

sampled and applied. Furthermore, object could be tracked with the camera, using

visual feature to detect motion and estimate SE(3) transforms from frame to frame.

The primary challenge of allowing movable object will be developing a motion model

that is sufficiently accurate for the wide variety of shapes generated by the beliefs.

6.2.2 Leaving the Graph

BTP from Chapter III restricts all robot motion to the initial roadmap, limiting

the action space. For freespace motion, this restriction is minor, as reasonably dense

roadmaps contain paths only slightly worse than the optimal unconstrained path.

The graph restriction is much more apparent after a contact is made.

Consider attempting to find a light switch in the dark. Likely you will wave your

arm until you contact the wall, and then stay in contact with the wall while searching

for the switch. You use the prior knowledge that the switch will be on the surface

of the wall, and that exploring the contact manifold between you and the wall is a

good strategy. In BTP, the robot’s only option after contact is to follow motions

prescribed by the roadmap. This roadmap was generated without knowledge of the
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Figure 6.1: Leaving the Graph of the Blindfolded Traveler’s Problem.
Left: The initial BTP graph. Motion is limited to the graph edges.
Middle: After collision a node could be created at the current configuration (red
circle) with new edges (blue dashed lines) to traverse.
Right: The agent could then closely follow the surface of obstacles.

wall, and therefore will not (i.e. with probability 0) have any edges traversing the

contact manifold.

A solution is to traverse a dynamic implicit graph, rather than a static precom-

puted roadmap. After contact, the robot can consider new motions along edges con-

structed conditioned on gathered information. For example, new edges can explicitly

traverse tangential motions to a wall, and following an edge may require invoking a

controller to maintain contact with the wall, visualized in Fig. 6.1. Such a solution

may look like the “interleaving planning and control” approach of Chapter II 2.5.

A opportunity for research could define rules for constructing this implicit graph.

Adding nodes arbitrarily could create endless loops, where the planner generates

additional nodes ad infinitum, continuing motion forever without reaching the goal.

Unlike the original BTP, a solution could exist but never be found. Further work

could identify constraints on the node and edge generation to maintain some of the

guarantees of BTP.

A related strategy I have explored is Selective Densification (Saund and Berenson,

2020a). In Selective Densification search is performed on a layered graph. The top

layer is a sparse roadmap, with long edges traversing large distances leading to fast

search in freespace but no solution traversing narrow passages. Each lower layer

contains all nodes of the previous layer as well as additional nodes and edges. 0-cost

vertical edges traverse layers and do not correspond to any robot motion. A heuristic

biases search towards sparser layers to attempt to achieve faster planning. Figure 6.2

shows an example planning problem and visualization of the layered graph.
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Figure 6.2: A 2D search problem solved using Selective Densification with evaluated
edges shown in black (valid) and red (invalid) and the final path shown in blue. Left:
2D view with red obstacles. Right: View of Layered Graph with unevaluated edges
shown in light grey

In Selective Densification, the layered graph is explicitly constructed using a sam-

pling procedure such as a densifying grid (as in Fig. 6.2), halton sampling, or random

sampling. Integrating Selective Densification into the contact planning problems dis-

cussed in this thesis will require a different sampling procedure that is dependent

on the observations. One could design a sampling procedure to densify as shown in

Fig. 6.1. The search procedure could use a similar Selective Densification Heuristic,

biasing planning away from dense layers representing contact with objects, but not

preventing such motion in cases where contact signficantly improves the plan.

6.2.3 Context-dependent Goals

The Blindfolded Traveler’s Problem from Chapter III assumes the task is solved

once the robot reach any goal from a set of goal configurations. The assumption that

the goal configurations are known is odd, since the BTP explicitly handles unknown

environments. For many tasks the goal will be dependent on the specific unknown

environment, requiring the robot to localize some portions of the environment to even

know how to complete a task.

I have implemented a cursory general approach. A goal generator function g is

provided instead of an explicit goal set. g applied to a specific world occupancy φ

provides a goal region G in configuration space C.

g(φ) = G ⊂ C (6.1)
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Figure 6.3: Architecture for BTP with goals dependent on the belief over states

The updated pipeline in Fig. 6.3 computes a belief over world occupancy as a set of

sampled worlds as before, but then computes the goal set for each sampled world.

The updated planner must reason over unknown worlds as they connect to unknown

goal sets. Below I discuss areas for further refinement in this method.

Goal Generation: The generic function g leaves the problem both general but

open-ended. For a picking task, g might generate the set of configurations for which

closing the gripper will grasp the object. For a placing task, g might generate the set

of configurations such that the held objects rests stably on the drop off surface. These

specific examples have ample literature to guide a user on how to generate the goal

set for a specific world instance. However, a more complete analysis would consider

a wider variety of tasks and associated goal generators.

When to declare success: Without a known goal set, an algorithm must decide

when to terminate. A naive approach could declare success whenever P (q ∈ g(φ)|Φ)

is sufficiently large, for example by requiring that q is in the goal set for every world

φ sampled from the belief. The true success of an algorithm must be judged based

on the goal set of the true but unknown underlying world φtrue.

One strict approach is to allow an algorithm to determine when to terminate, then
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assign an additional high cost (or mark as failure) if q /∈ g(φtrue). An alternative is

to further augment BTP and allow the robot to query (for some cost) if q ∈ g(φtrue).

A physical analogy could be executing a grasp and observing if the target object

becomes held by the gripper. If such a check fails, then the robot has accumulated

some cost, but learns the task is not complete, can update the belief over worlds (i.e.

removing worlds where the task is complete), and continue planning.

Planning: Without a specific goal set, the planning portion of the BTP becomes

yet more coupled with the belief over worlds. The optimal solution would consider the

full POMDP, taking into account the current uncertainty, the potential observations

of each action, how each of these observations would update the belief over worlds,

and finally how updating these worlds would update the belief over goals. All of these

considerations would be unrolled, considering all possibilities for all actions until an

optimal solution is found. This brute-force process is clearly intractable.

Instead, I have examined a simple heuristic. Consider the set of configurations

that could possibly be goals under the current belief: G = ∪φ∈Φg(φ). While the robot

configuration satisfies q /∈ G, clearly the task is not solved. Here I use an exploitation

heuristic and use the same planning procedure in BTP (Chapter III 3.5) to plan to

any configuration in G. This heuristic quickly reaches a possible goal configuration,

yet ignores actions which could generate value information to refine G. As the robot

attempts to reach G, observations will update the belief over worlds which may in

turn alter G.

Once the robot has entered some q ∈ G but is not sufficiently confident it has

reach a goal of the true underlying world g(φtrue), I use an exploration heuristic. The

robot considers a set of possible next actions. For each action the robot calculated the

information gain following the methods of (Saund et al., 2017). In summary, the robot

considers the different observations it might receive for each world φ ∈ Φ. The most

informative action is the one which will likely lead to an observation that distinguishes

between worlds in the belief. Note that there is an internal heuristic embedded in

this method as well, as the information gain only considers distinguishing between

worlds and not goals. It could be that two different worlds have the same goal set.

This IG heuristic would favor action that distinguish these worlds, even though the

distinction is unimportant for the overall planning problem.

In practice these two heuristics appear to produce desirable behavior on initial

problems. Further work is needed to consider alternative approaches, and explore the

benefits and limitations of these heuristics.
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6.3 Final Remarks

This thesis has explored planning with contact feedback, examining the key issues

of belief representation and belief-space planning. My development of this thesis

brought about the Collision Hypothesis Set (CHS) observation model, the Blindfolded

Traveler’s Problem (BTP), the Plausible Shape Sampling Network (PSSNet), and

the Constrained Latent Shape Projection (CLASP). These components provide a

framework for robot planning in unknown environments.

As with many research projects, much of my time was spent on work that ulti-

mately did not make it in to this document. Some projects manifested as software

packages or other research papers, but most of my effort went into exploring ideas or

tangents that ultimately proved to be unsuccessful. Do not despair over such result,

for they make the successful discoveries more sweet.

I hope my framework is not the final word on these topics, but instead that it opens

a door to greater ideas. Through the explanations of the successes and limitations of

my work, I hope this thesis helps guide your path to the fruitful areas of undiscovered

knowledge.
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APPENDIX A

A.1 Overview of Robotic Hardware

The main robot used for experiments in this thesis is Victor (Figure A.1). Vic-

tor consists of two Kuka iiwa robotic arms (KR-800) mounted horizontally. For all

experiments these arms were set to “Impedance Mode”, and used their joint torque

sensing within an impedance controller internal to the Kuka software. On top of the

Kuka stack we implemented controllers and planners to direct Victor. Joint torque

measurements were published at 100Hz and used to stop the robot when collision was

detected.

Each arm has a Robotiq three-finger end effector for manipulating objects. While

this work uses the grippers to motivate the applications of this thesis, grasping itself

is not core to the algorithms.

Victor sees the world through a Kinect RGBD sensor at it’s head. Additional

software components segment the images into distinct objects for further reasoning

about the world. All components communicate using the Robotic Operating System

(ROS).

A.2 Analysis of BTP

A.2.1 Mapping the BTP to a POMDP

We map BTP problem to a Partially Observable Markov Decision Process (POMDP)

specified by the following tuple 〈S,A, T, C,O, Z〉 which we define as follows.
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Figure A.1: Victor shaking my hand. Victor was the main robot used in experiments.

The state s ∈ S is the tuple s = (v, x, η) where v ∈ V is the current location of

the traveler on the graph G, x is the binary vector of edge validities and η is a vector

of edge blockages. The state is partially observable, i.e. v is observable but the rest

is latent.

Given state s ∈ S, the action a ∈ A(s) is any edge e ∈ E that can be traversed,

i.e., whose parent is v. Let the result of the attempt be (v′, c) = Γ(v, e, x, η). The

transition function T (s, a, s′) is deterministic, i.e. s′ = (v′, x, η). Similarly, the one

step cost is C(s, a) = c. The observation o ∈ O is the tuple o = (x(e), η(e)). Hence

the observation model Z(s′, a, o) is deterministic.

Since the state is partially observable, the POMDP is viewed as a MDP over belief

b. A POMDP policy π(b) maps b to actions. The optimal policy π∗ accumulates the

minimum cost in expectation. The Q-value of action a in a belief state is the expected

total cost of taking a and subsequently following π∗, i.e.

Q(b, a) = Es∼b [C(s, a)] + Eb′∼P (.|b,a)

[
V π∗(b′)

]
. (A.1)

A.2.2 Computational Complexity

In BTP, the belief b is over a continuous space S due to blockages η, i.e. the

exact belief is infinite dimensional. This necessitates approximation based approaches

that rely on non-parametric sample-based belief representations. For the proofs in

this section we consider a discrete/simplified BTP with discrete b by fixing η(e) = 1.

Furthermore, we examine the BTP decision problem instead of the optimally problem.

We follow an analysis parallel to Lim et al. (2017) to show that the BTP decision
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problem is NP-complete by showing it is both in NP and NP-Hard.

We first prove that the BTP decision problem is in NP. For this result we consider

an explicit description of the input P , that is P specifies probability of each possible

world. Note that P could be exponentially larger than |E|. In this case BTP would

still be in NP, though P (part of the input) would be so large as to make this claim

of limited use.

We also prove that BTP is NP-hard by reduction from the Optimal Decision Tree

(ODT) problem. The ODT problem is as follows. We have a finite set of hypotheses

H = (h1, h2, . . . , hn) and a finite set of tests T = (t1, t2, . . . , tm). A test ti leads to an

outcome oi ∈ {0, 1} depending on the latent hypothesis h∗ ∈ H. The objective is to

find a policy that identifies h∗ with the least number of tests when h∗ is uniformly

distributed. The policy is a binary decision tree where nodes are tests, edges branch

on outcomes and the terminal nodes stores the latent object h∗ ∈ H. The decision

version of the problem, which asks if a policy with expected cost of less than or equal

to w is NP-complete (Laurent and Rivest , 1976).

Theorem A.1. We define the decision version of Blindfolded Traveler Problem as

the question of whether there is a policy with expected cost less than or equal w. The

decision version of discrete/simplified BTP is NP-complete.

Proof. The solution of BTP can be represented as a policy tree. Note that nodes

and edges in this policy tree are distinct from nodes and edges in the graph G of the

BTP. Nodes of this policy tree represent testing an unevaluated edge in G. A node in

the policy tree may even represent traversing several known edges in G to reach the

unknown edge in G. Each edge of the policy tree is an observation o received upon

performing an edge. A BTP is solved by traversing the policy tree till the leaf node

is reached, i.e. evaluating unknown edges, receiveing observations until the goal is

reached.

The optimal policy tree is polynomial size in the input of BTP. Consider that

each edge in the policy tree corresponds to an action (or actions) in the BTP that

will determine the validity of one edge in G, thus the policy tree can be at most |E|
deep. Furthermore, there can be at most one unique path through the policy tree

for each hypothesis world in P . Since we assume each hypothesis world is explicitly

represented in P , the optimal policy tree is polynomial in |G| and |P|.
Finally, computing the expected cost of a policy is simply a weighted sum for all

paths through the policy tree. Hence the BTP decision problem is in NP.

We now show that ODT is polynomial time reducible to BTP and thus BTP is NP-

hard. Given an instance of ODT(H, T ), we consider an instance of BTP 〈G,P , vs, vg〉
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as follows. Consider the BTP problem shown in Fig. A.2. The cluster of edges

{e1, . . . , em} correspond to the tests {t1, . . . , tm}. Note again that the blockages for

all tests is fixed at η(e) = 1. An agent attempting to traverse the edge ej will either

be successful and reach the vertex vj, or unsuccessful and the agent will return back

to vs. The cluster of edges {em+1, . . . , em+n} has only one valid edge correspond to

identifying the correct hypothesis from (h1, h2, . . . , hn). The weights of the left cluster

of edges {e1, . . . , em} is 1 and the right cluster of edges is 2m.

We set up the prior P to be uniform over a set of candidate vectors xi, each of which

corresponds to a hi. For the latent hypothesis hi, we set the edge validities x(ej) = oj

for j = {1, . . . ,m}, i.e. the outcome of the tests for hi. For the other cluster, we set

x(em+i) = 1 and all other edges to 0, i.e., x(ej) = 0 for j = {m, . . . ,m + n}, j 6= i.

We now argue that expected cost of ODT instance is less than or equal to some value

w iff cost of BTP instance is less than or equal to 2w + 2m.

First, if the cost of the ODT is ≤ w then the agent can traverse the left cluster

using the policy tree of ODT and identify the correct hypothesis h∗ with cost ≤ 2w.

The agent then goes to vg using the valid edge incurring 2m. Hence the total cost of

the BTP is ≤ 2w + 2m.

Next, we prove the converse that if the cost of the BTP is ≤ 2w + 2m, then the

cost of the ODT is ≤ w. Note that w > m is vacuous because ODT is clearly solved

by at worst evaluating all tests, which would incur cost m. Thus we consider w ≤ m

which implies the cost of the BTP is ≤ 4m. First consider that if an edge to vg is

attempted before identifying the correct hypothesis, there will be at least two equally

likely paths with cost 2m and so the expected cost of any policy that tries to go

directly to the goal is ≥ 4m. Hence the agent will try to identify the true hypothesis

before going to the target. If the agent solves the BTP by identifying the correct

hypothesis with cost ≤ 2w+ 2m then it also has a policy to solve the ODT with cost

w.

Thus ODT is reducible to BTP in polynomial time, and since ODT is known to

be NP-hard then BTP is also NP-hard. Since we also showed BTP is in NP, BTP is

therefore NP-complete.

Note that if P is not represented explicitly (e.g. not by a matrix of size |E| by the

number of hypothesis worlds), but with factored representations, then the problem

may no longer be in NP. Also if we further consider the location of the contact (η),

the size of the hypothesis space is now continuous and this analysis no longer holds.
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Figure A.2: Reduction from Optimal Decision Tree problem

A.2.3 Relation to the Bayesian Canadian Traveler’s Problem

The BTP is closely related to the Canadian Traveler’s Problem (CTP) (Papadim-

itriou and Yannakakis , 1991a). In graph search an agent executes a polity to reach

a goal with the minimum expected cost. Consider the k-lookahead graph search

problem, where an agent only observes the true validity of edges within k steps of

its location. The Shortest Path Problem over known graphs in an instance of ∞-

lookahead. The CTP is a 1-lookahead instance. For k ≥ 1 an agent knows the

state of adjacent edges and therefore will never attempt an invalid edge. In BTP,

with k = 0, an agent might attempt invalid edges, which is the reason for the more

complicated cost formulation.

In the original CTP x(e) are independent. In the more general Bayesian CTP

(BTCP) (Lim et al., 2017) x(e) are correlated through beliefs of underlying worlds φ

rather than beliefs directly over x. As defined, the BTP is analogous to the Bayesian

CTP.

A.3 Strategies for Solving the BTP

Since we established that BTP is a hard problem (Section A.2.2), we explore a

number of efficient approximation strategies to solve it. We organize these approaches

into three categories – approaches that approximate the Q-value with heuristics, ap-

proaches that use simulation to evaluate actions and approaches that plan to gather

information. Note that while the latter approaches have theoretical guarantees, they

come at the cost of computational complexity.

For all of these strategies, we assume that the agent is current at a vertex vt and

must decide which edge et from the set of outgoing edges N (vt) to traverse. The

history of observations is encoded in ψt.
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A.3.1 Heuristic Estimates of Q-values

One class of approaches try to approximate optimal Q-value Q∗(b, a) with an

estimate Q̂(b, a). These approximations are motivated by different relaxations of

the original problem. Since these approximations are myopic, i.e., only consider

the instantaneous belief, they do not offer any performance guarantees in general.

However, they are efficient to compute and perform quite well in practice.

A.3.1.1 Optimism in the Face of Uncertainty (OFU)

A common approach for planning under uncertainty is to be optimistic (Brafman

and Tennenholtz , 2002), i.e., pick a world from the plausible set of worlds that leads

to the lowest action value. The rationale is that either the assumption is correct and

the agent does the best it can do, or the possibility is eliminated and the search space

is reduced. This heuristic is commonly used in navigation (Stentz , 1997; Koenig and

Likhachev , 2002) as well as for solving CTP (Bnaya et al., 2009).

Formally, the approximation is Q̂(b, a) ≈ mins,b(s)>0Q(s, a). An optimistic policy

selects the best action πOFU = arg min
a

Q̂(b, a). Mapping this back to the BTP, the

agent chooses edge et as follows:

Ĝ = (V , E \ {e | P (x(e) = 0|ψ) = 1} ,W)

et =
{
e ∈ N (vt)

∣∣∣ e ∈ ShortestPath(Ĝ, vt, vg))
} (A.2)

Here Ĝ is the optimistic graph created by removing all edges that are invalid with

probability 1. The agent invokes a search subroutine ShortestPath(Ĝ, vt, vg) to

compute the shortest path from current vertex vt to goal vg. It then looks at which

of the outgoing edges N (vt) belongs to the shortest path and takes that.

We can bound the sub-optimality of the optimistic policy if we alter it to backtrack

whenever the shortest path is in collision. Let this policy be πOFU2. This results in

the following iterative policy

1. At iteration i, the agent computes shortest path from start to goal on the

optimistic graph, i.e. ξi = ShortestPath(Ĝi, vs, vg)

2. It moves along ξt till it either reaches the goal or hits a blocked edge x(e) = 0.

3. If it hits a blocked edge, it back tracks to start vs and repeats.

Then the following theorem is true
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Theorem A.2. Given a configuration (x, η), let w∗ be the length of the shortest fea-

sible path between vs and vg, and K be the number of shorter paths that are infeasible.

For all such configurations, the cost of the optimistic backtracking policy πOFU2 is

upper bounded by

c(πOFU2(x, η)) ≤ 2Kw∗ (A.3)

Proof. The optimistic backtracking policy will attempt the shortest path from vs on

Ĝ, which must be no longer than the shortest path on G. Each attempted path

therefore incurs at most a cost of 2w∗. Since each attempt either reaches the goal or

invalidates a path shorter than w∗, there will be at most K attempts.

Interestingly, if we changed the problem to the following:

1. The agent has to reach the goal via the shortest path from start

2. The agent is allowed to backtrack for free

this problem becomes equivalent to the shortest path planning problem on expensive

graphs (Dellin and Srinivasa, 2016). πOFU2 is then equivalent to LazySP (Dellin

and Srinivasa, 2016) which has been shown to be optimal (Mandalika et al., 2018).

A.3.1.2 Thompson Sampling (TS)

This is a commonly used heuristic for Bayesian Multi-armed Bandit (MAB) prob-

lem based on the idea of randomized probability matching (Thompson, 1933). At

every decision step, it samples a model from a posterior and selects the optimal ac-

tion for that model. Hence action selection probability is matched to the posterior of

actions being optimal. In recent literature, Thompson Sampling has shown to be em-

pirically successful (Chapelle and Li , 2011), theoretically sound (Agrawal and Goyal ,

2013) and applicable beyond MAB to RL (Osband et al., 2013).

Formally, the TS policy is πTS = arg min
a

Q∗(s, a) where s ∼ b. Mapping this back

to BTP, the agent chooses edge et as follows:

x̂ ∼ P (x|ψt), Ĝ = (V , E \ {e | x̂(e) = 0} ,W)

et =
{
e ∈ N (vt)

∣∣∣ e ∈ ShortestPath(Ĝ, vt, vg))
} (A.4)

Here Ĝ is the sampled valid graph from the posterior on which the agent plans the

shortest path and takes a step along it. Thompson sampling usually provides a bound

for MAB w.r.t Bayesian regret, i.e., the expected regret under the prior (Russo and
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Roy , 2018). These bounds are meaningful for repeated trials on the same world,

which is not the case for BTP.

A.3.1.3 Qmdp

This is one of the most commonly used heuristics for POMDPs (Littman et al.,

1995). It assumes that all uncertainty will disappear at the next timestep. Hence

the optimal action is the one with the least expected value based on the current

uncertainty.

Formally, the approximation is Q̂(b, a) ≈ Es∼b [Q∗(s, a)] and the policy is πQmdp =

arg min
a

Q̂(b, a). Mapping this back to BTP, the agent chooses edge et as follows:

et = arg min
e∈N (vt)

E(x,η)∼P (·|ψt) [c+ w(ShortestPath(G(x), v′, vg))]

where (v′, c) = Γ(vt, e, x, η) and G(x) = (V , E \ {e | x(e) = 0} ,W)

(A.5)

Here we sample a set of worlds (x, η) ∼ P (·|ψt). For each candidate edge e ∈ N (vt),

we simulate moving along the edge (which may or may not result in a success) and

subsequently plan the shortest path on the revealed world.

It’s straightforward to see Qmdp lowerbounds the optimal value Q̂(b, a) ≤ Q∗(b, a).

There are two known drawbacks. Firstly, the policy never acts to gain information

because it ignores potential observations. Secondly, and perhaps more relevant to

BTP, it’s susceptible to a clairvoyance trap.

A.3.1.4 Most Common Best Edge (MCBE)

This is a further relaxation of the Qmdp heuristic. Note that Qmdp calls ShortestPath(·)
a total of kN times, where k is the degree of the graph and N is the number of sam-

ples. We can reduce this to N if the agent chooses action based on the current belief,

without first simulating an action.

Formally, the policy is πMCBE = arg max
a

Es∼b
[
I(a ∈ arg min

a′
Q∗(s, a′))

]
. Map-

ping this back to BTP, the agent chooses edge et as follows:

G(x) = (V , E \ {e | x(e) = 0} ,W)

et = arg max
e∈N (vt)

E(x,η)∼P (·|ψt) [I(e ∈ ShortestPath(G(x), vt, vg))]
(A.6)

Here we sample a set of worlds (x, η) ∼ P (·|ψt), find the shortest path for each world
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and store the first edge along the path. The agent moves along the most common

edge.

MCBE and Qmdp do not necessarily agree on the same actions. One can con-

struct examples where MCBE has a very high Qmdp value because the action maybe

quite suboptimal for worlds for which it is not on the shortest path. MCBE too is

susceptible to the clairvoyance trap.

A.3.1.5 Collision Measure (CM)

A drawback of the OFU policy is that it does not reason about the likelihood

of a path to be valid. This can lead to excessive exploration of implausible paths.

Augmenting the original W with a term penalizing small P (x) retains the graph

substructure needed for efficient search while hedging against likely blocked edges.

We examine weight augmentation using the collision measure proposed in (Choudhury

et al., 2016) for fast motion planning with C-space beliefs.

This heuristic balances exploration (assuming unexplored edges are free) with

exploitation (penalizing edges with low validity likelihoods). The agent is at a vertex

vt and decides which edge et from the set of outgoing edges N (vt) to traverse as

follows:
Ĝ = (V , E , w(e)− α logP (x(e) = 1|ψt))
et =

{
e ∈ N (vt)

∣∣∣ e ∈ ShortestPath(Ĝ, vt, vg))
} (A.7)

Here Ĝ is an optimistic graph created by removing all edges that are invalid with

probability 1 given observation history ψt. Further, the weights are penalized by

log-probability. Log-probability is chosen because for a path ξ, the log-probability is

additive over edges assuming independence, i.e., logP (x(ξ)) =
∑

e∈ξ logP (x(e)). A

known blocked edge (P (x(e) = 1|ψ) = 0) yields a weight of∞, and a known free edge

(P (x(e) = 1|ψ) = 1) yields w(e).

We provide theoertical justification behind such a heuristic. We begin by mapping

BTP to a Bayesian Search (Ross , 2014) problem. Let Ξ = (ξ1, ξ2, . . . , ξn) be the set

of simple paths from vs to vg. The probability of edge validity P (x) maps to a joint

probability P ((ξ1, ξ2, . . . , ξn)) of paths being valid. For each path ξk, we assign a cost

twice the length of the path ci = 2w(ξi). We now describe a sequential game of at

most n rounds. In each round the agent attempts to traverse a path ξk. If the path

is valid, it reaches the goal and receives a cost of ck and the game terminates. Else,

it receives a cost of ck, remains at the start and the game continues.

Let σ be a sequence of attempting paths, i.e. a particular permutation of {1, · · · , n}.

84



Let E [c(σ)] be the expected cost of a sequence. The optimal sequence σ∗ has minimal

expected cost, i.e. E [c(σ∗)] ≤ E [c(σ)] for all sequences σ∗.

Let σg be a sequence corresponding to a greedy policy that selects the path with

the maximum posterior to cost ratio. Formally, this rule is defined as follows.

σg(i+ 1) = arg max
j

P (ξj = 1|ξσg(1) = 0, ξσg(2) = 0, · · · , ξσg(i) = 0)

c(ξj)
(A.8)

where the numerator is the posterior probability of a path given the observations seen

thus far and the denominator is cost of the path.

(Dor et al., 1998)(Theorem 4.1) proved that greedy has an optimality bound of 4

Theorem A.3. Given the following conditions on the game:

1. There exists at least one valid path

2. Ratio of costs are bounded supi,j
ci
cj
<∞

The performance of the greedy sequence σg is bounded

E [c(σg)] ≤ 4E [c(σ∗)] (A.9)

Proof. We refer the reader to Theorem 4.1 in (Dor et al., 1998).

We now map this result back to BTP. Note that BTP has an asymmetric cost of

attempting a path. If traversal is successful, the agent pays half price of 0.5ci, else in

the worst case pays the full price of ci for going all the way to goal and returning. Let

c̄(σ) be the cost of a sequence under these new rules. Note that the greedy policy σg

remains the same with these new rules. We can transfer the bound from Theorem A.3

Corollary A.4. The performance of the greedy sequence σg is bounded

E [c̄(σg)] ≤ 8E [c̄(σ̄∗)] (A.10)

Proof. Let σ̄∗ be the optimal policy for the new game. Then c̄(σ̄∗) ≥ 0.5c(σ̄∗) where

the bound is tight if the optimal policy never encounters a blocked path. It’s straight-

forward to see that

c̄(σg) ≤ c(σg) ≤ 4c(σ∗) ≤ 4c(σ̄∗) ≤ 8c̄(σ̄∗) (A.11)
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The greedy sequence is equivalent to a more general notion of the collision measure

policy that can solve the following optimization

πCM2 ≡
{
e ∈ N (vt)

∣∣∣∣ e ∈ arg min
ξ

w(ξ)

P (x(ξ) = 1|ψt)

}
(A.12)

The optimization in (A.12) is intractable as 1
P (x(ξ)=1)

is not additive. We choose

to approximate this with log-probability. We utilize the following inequality for p ∈
(pmin, 1] and α ≥

1
pmin

−1

log 1
pmin

(1− log p) ≤ 1

p
≤ (1− α log p) (A.13)

Hence (1− α log p) is a good family of approximators to 1
p

which justifies (3.9) is

an approximation.

A.3.2 Simulation-based Policies

This class of approaches employ simulation to estimate action values. We refer to

the policy being simulated as the rollout policy π(b). Let V π(b)(s) be the cumulative

cost of the rollout policy initialized with belief b and simulated on the underlying

MDP from state s. Note that unlike Section A.3.1, the simulator only has access to

s and not the policy π. The simulator is thus able to provide observations o to the

policy which updates the belief used in the rollout. We can then approximate action

value as Q̂(b, a) ≈ Es∼b
[
c(s, a) + V π(b′)(s′)

]
, where s′, b′ is the next state and belief.

The attractive aspect of these approaches is that any policy from Section A.3.1

can be used as a rollout policy. For any such policy, we have the following upper

bound

Q̂(b, a) ≥ Es∼b
[
c(s, a) + V π∗(s′)

]
≥ Q∗(b, a) (A.14)

If this is close to matching lower bounds from Section A.3.1, the value can be known

exactly. However, the simulator invokes these policies O(NTk) where N is the num-

ber of samples and T is the maximum horizon length, and k is the degree of the

graph. Each invocation requires at least one belief update and perhaps several calls

to ShortestPath. Even with parallelization this is memory and computation heavy.

86



A.3.2.1 Optimistic Rollout (ORO)

One of the simplest rollout policies is the OFU policy because it involves only one

invocation of ShortestPath. Let πOFU be the OFU policy. Let V πOFU(v,ψ)(x, η) be

the evaluation of the policy starting from vertex v with history ψ on an underlying

graph (x, η). The agent chooses edge et as follows:

et = arg min
e∈N (vt)

E(x,η)∼P (·|ψt)

[
c+ V πOFU(v′,ψ′)(x, η)

]
where (v′, c) = Γ(vt, e, x, η) and ψ′ = ψt ∪ (x(e), η(e))

(A.15)

A.3.2.2 Upper Confidence Tree (UCT)

This is a state of the art algorithm from planning under uncertainty (Kocsis and

Szepesvári , 2006) which combines the framework Monte-Carlo Tree Search with Upper

Confidence Bound (UCB) for action selection. It has successfully been used for solving

games (Gelly and Silver , 2007; Silver et al., 2016), POMDPs (Silver and Veness , 2010)

and Bayesian RL (Guez et al., 2012). The idea builds on top of simulation based

evaluation but differs on how actions are selected and how estimates are backed up.

Each UCT rollout begins with a belief sate b0 and grows a tree where each node

is a successor b. The value of each action Q̂(b, a) is an average over successors. To

expand a given node, the search has to select one of k actions that according to the

following rule:

arg max
ai

B

√
logN(b, ai)

N(b, ai)
− Q̂(b, a) (A.16)

Once the search goes off the tree, it uses a roll out policy (such as πOFU) to finish

the episode. UCT has been proved to converge to the exact Q-values (Eyerich et al.,

2010) asymptotically, i.e. Q̂(b, a) → Q(b, a). However there is no such guarantee on

the rate of convergence. Hence, in practice, UCT might have to do a large number of

simulations.

A.3.3 Planning to gather information

The final class of approach we consider is where an agent plans to explicitly gather

information. One such approach is the Hedged Shortest Path under Determinization

(HSPD) (Lim et al., 2017) algorithm which was original defined for the Bayesian

Canadian Traveler Problem. HSPD determinizes the graph according to the most
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likely edge (MLE) assumption - each edge is set to valid if the marginal posterior

probability is 0.5. The agent at every timestep plans two paths - exploitation and

exploration. The exploitation is simply the shortest path to goal. The exploration

path is the shortest path that reduces the version space to less than 0.5 fraction. The

agent then takes the shorter of these paths and travels till it encounters a blocked

edge, following which it returns to the start. This happens only a logarithmic number

of times till it finds a path to goal.

This method for the BCTP has a near-optimality guarantee of 4(log δ + 1) where

δ is the minimum prior probability of an underlying world. However, there are two

concerns with the approach. Planning in belief space requires several invocations to

the Bayes filter which can be expensive. Secondly, for the case of BTP the value of

δ can be quite small as the observations are continuous. For these reasons, we chose

not to proceed with this method although an efficient implementation for BTP would

be of great interest.

A.4 CLASP Experiment Details and Alternate Analysis

A.4.1 Shape Network Training

We generated 3 distinct datasets of voxelized objects with size 643 from random

axis-aligned boxes (AAB), YCB objects (Calli et al., 2017), and ShapeNet mugs

(Chang et al., 2015). Boxes for AAB had width, depth, and height uniformly sampled

with 2 to 41 voxels. For YCB and ShapeNet we generated ground truth voxelgrids

centered on the object with different rotations using binvox (Nooruddin and Turk ,

2003; Min, 2004 - 2020). For YCB we applied all 15 degree increment rotations

about both the vertical and a horizontal axis. For Shapenet we applied all 5 degree

increment rotations about the vertical axis.

During each epoch of training, each voxelgrid was augmented with translations

sampled uniformly from -10 to 10 voxels in each direction. The 2.5D “known occu-

pied” and “known free” voxelgrids were generated assuming a sensor looking down

the x-direction. Sensor noise was simulated by sampling IDD 0-mean 2cm-std. devi-

ation gaussian random noise in a depth image of 16x16, scaling that depth image to

64x64 using bilinear interpolation, then applying that noise to the x-direction of the

known occupied and free voxelgrids.

We trained separate instances of PSSNet (Saund and Berenson, 2020b) on AAB,

YCB, and Shapenet mugs, training for at least 100 epochs (∼1 day), and used the

iteration with minimal loss for experiments.
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A.4.2 Robot Motion Generation

The following procedure was used to generate the robot motion which in turn

generated the contact and freespace observations. The robot began each trial with

a roadmap: a graph of nodes corresponding to configurations, and edges of robot

motions connecting the nodes. Each scene contained a Goal Generator function,

which mapped the completed objects to a goal Task-Space Region (TSR) (Berenson

et al., 2011). Using 10 sampled worlds, there were a corresponding 10 separate TSRs.

In the scene above, the Goal Generator took the mean of the completed object points,

and generated a TSR centered 10cm back in the occluded region.

At each iteration if the robot did not currently satisfy any TSR, approximately

80 configurations were sampled from each TSR and added to the roadmap, and the

robot would attempt to traverse the roadmap to the closest configuration in a TSR.

If the robot satisfied all TSRs the task was considered complete.

If instead the robot satisfied at least one but not all TSRs, the robot took an

information gathering action. For each outgoing edge of the robot’s node on the

roadmap, the Information Gain (IG) was calculated from the existing particles using

the method in (Saund et al., 2017). The robot took the action with highest informa-

tion gain, which often (intentionally) contacted an object. The belief was updated

and the next iteration began.

Detecting contact in simulation: The voxelized robot was computed using

GpuVoxels (Hermann et al., 2014) with a much larger 2563 voxelgrid with 1cm voxel

side lengths. This robot voxelgrid was converted to an occupied point cloud, then

transformed to the object frame, and converted into a voxelgrid matching the size

and position of the depth image voxelgrid. Contact was determined by checking for

overlap between the robot and object voxelgrid. For each configuration visited not in

contact, the voxelized robot was added to the known freespace. Each configuration

in contact generated a Collision Hypothesis Set, added to Qcontact.

A.4.3 Likelihood Results

We consider an alternative analysis of the experiment data presented in Sec-

tion 5.5.4. Given that we model scenes by sampling shapes in a particle filter, we

consider the likelihood of the ground truth scene given the particles. Since a particle

filter models discrete samples, none of which will exactly match the ground truth, we

apply a kernel to our particles in workspace. Specifically, we apply a non-normalized
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Figure A.3: Plots of likelihoods of CLASP and baselines under the particle filter belief
and kernel function.
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Figure A.4: Likelihood of CLASP and baselines for the multiobject scene

kernel based on the Chamfer Distance between two shapes s1, s2:

k(s1, s2) =
1

CD(s1, s2)
(A.17)

The (non-normalized) likelihood of a particular scene occupancy s under the belief

of n particles Φ is then

p(s|Φ) =
∑
φ∈Φ

1

n
k(fdec(φ), s) (A.18)

where fdec(φ) decodes all latent shape vectors z ∈ φ into a scene.

We plot the likelihood of the true scene in Fig. A.3 and Fig. A.4, and find sim-

ilar trends as in Section 5.5.4. The magnitude of the likelihood is not meaningful,

however the relatively likelihoods between the methods are. Initially methods per-

form similarly, except VAE GAN which is either better or worse than other methods.

With contact and freespace observations, our proposed CLASP with PSSNet tends to

increase the likelihood of the ground truth scene, while VAE GAN tends to decrease

the likelihood.
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